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1 Introduction

This report gives a fairly complete introduction to the Structured Singular Value( p) and

details some of the latest results. The p-based methods discussed here have proven to be

useful for analyzing the performance and robustness properties of linear feedback systems.

This report also describes the recent nonlinear extensions.

It is assumed that the reader is familiar with the general p analysis framework. In this con-

text, analysis refers to the process of determining whether a system with a given controller

has desired characteristics, whereas synthesis refers to the process of finding a controller

that gives desired characteristics, usually expressed in terms of some analysis method.

This is the fairly standard usage of these terms in the control community. It should be

obvious that the question of analysis must be settled to some degree before a reasonable

synthesis problem can be posed. The formal analysis and synthesis techniques discussed

are only some of the methods that might make up the overall process of engineering design. 0

The general framework to be used is illustrated in the diagram in the. figure below.

A

P

K

Figure 1.1 General Interconnection

Any linear interconnection of inputs, outputs, commands, perturbations, and a controller

can be rearranged to match this diagram. For the purpose of analysis the controller may

be thought of as just another system component and the diagram reduces to that below

d e

Figure 1.2 Perturbed Disturbance-to-error

The analysis problem involves determining whether the error e remains in a desired set for

F , O
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sets of inputs d and perturbations A. Analysis methods differ on the description of these
sets and the assumptions on the interconnection structure G. For now, G will be taken

to be a linear, time-invariant, lumped system and be represented by a rational transfer

function. The convolution kernel associated with G will be denoted as g, so G is a real-

rational matrix function of a complex variable and g is a matrix function of time. The

interconnection structure G can be partitioned so that the transfer function from d to e

can be expressed as the linear fractional transformation

e = F.(G, A) d = [G22 + G21A(I - G11 A)'1 G12]I d.

The external input d is an additive signal entering the system and is typically used to

model disturbances, commands, and noise. It is generally inadequate in modeling systems

for control design to consider uncertainty only in the form of uncertain additive signals.

The system model itself typically has uncertainty which can have a significant impact

on system performance. This uncertainty is a consequence of unmodeled dynamics and V

parameter variations and is modeled as the perturbations A to the nominal interconnection %

structure G. Note that the uncertainty modeled as A has a very different effect from that

of d on the performance of the system. For example, perturbations can cause a nominally

stable system to become unstable, which d cannot do.

At the heart of any theory about control are the assumptions made about G, d and

A, as well as the performance specifications on e. These assumptions determine the

analysis methods which can be applied to obtain conclusions about system performance.

A desirable objective is to make weak assumptions but still arrive at strong conclusions

and the inevitable tradeoff implied by this objective drives the development of new theory.

* The control theoreticians role may be viewed as one of developing methods that allow

* the control engineer to make assumptions which seem relatively natural and physically

motivated. The ultimate question of the applicability of any mathematical technique to a

specific physical problem will always require a "leap of faith" on the part of the engineer

and the theoretician can only hope to make this leap smaller.

It is beyond the scope of this report to give a thorough discussion of the relationship

between models and the physical systems they represent. Attention will be to the type

of models that arise in the a framework and have proven useful in applications. The

particular focus is on techniques that allow very precise analysis of systems which have

fairly standard performance requirements and uncertainty models in terms of additive

noise and plant perturbations. While the "best" assumptions for engineering purposes -
will always be a matter of debate, it is clear that for any given set of assumptions it

is desirable to have very precise analysis techniques. The ideal would be necessary and
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sufficient conditions for the satisfaction of a performance specification in the presence of

sets of inputs and perturbations. Additionally, the conditions should be computable orIshould at least yield bounds which give useful estimates of system performance. With

such methods, the engineer can focus directly on the relationship between uncertainty

assumptions and system performance without worrying about potential gaps caused by

inadequate analysis techniques.

The layout is as follows. Section 2 describes how parametric uncertainty in state space

models can be rearranged into the p framework. Section 3 defines p and its basic properties,

along with a few examples. Section 4 is a well known result about an exact expression for y.

Section 5 describes some mathematical preliminaries that are used in subsequent sections

concerning the computable upper bound. Section 6 develops theory for the computation

of the upper bound, and relates the upper bound to A. Section 7 explores guaranteed

relationships between the upper bound and A for various block structures. Section 8 is a

exposition of linear fractional transformations on structured uncertainties, and how both

A and the upper bound can describe their behavior. Section 9 gives robustness tests for

a special class of uncertain difference equations. The extension of the A-based methods

to time-varying and nonlinear controllers is outlined here. Section 10 is a frequency do-

main/small gain approach to the problem considered in section 9. Section 11 deals with

frequency domain p tests. This material is standard, and is what is usually associated

with p. Section 12 presents counterexamples showing that the upper bound and A are

different. Section 13 describes a power-like algorithm, reminiscent of power algorithms for

eigenvalues and singular values, that can be used to get lower bounds for P. Section 14

is an illustrative example, outlining the various analysis tests and possible conclusions.

Finally, Section 15 is the appendix.

10
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2 Parametric Uncertainty in Components

One natural type of uncertainty is unknown coefficients in a state space model. In this

section, we will consider a special class of state space models with unknown coefficients, X

and show how this type of uncertainty can be represented. In particular, we will extract

unknown quantities from a parametrically uncertain system so that the perturbations

enter the system in a feedback form, or, using the term we will later introduce, in a linear

fractional way. This type of modeling will form the basic building block for components

with parametric uncertainty.

After setting up the problem, we will proceed rather informally, manipulating some simple

block diagrams to arrive at the special representation of the uncertainty. These types

of manipulations are (either explicitly or implicitly) common to the rest of the report

particularly section 8. There, while the proofs we give are precise, they tend to hide the

key simple idea behind each particular lemma. It is useful to "draw" the block diagrams

pertinent to each result, as this makes both the result and proof clearer.

Finally, we reformulate the robustness problem which arises when controlling such uncer-

tain plants into a linear algebra problem, that, eventually, Y will solve. The material of

this section is motivated by the discussion in [MorM].

2.1 Problem description

We begin with an explanation of the matrix and block diagram notation that we will use

throughout. C'" k and RnX k are, respectively, all complex and real n x k matrices. Let

M E Cn"k. As usual, MT denotes the transpose of M, and M* denotes the complex

conjugate transpose. Suppose u and v are complex vectors, with u E Ck', v E Cn, and

v = Mu. Pictorially, we will draw this relationship as

or r

Figure 2.1 Pictorial Notation for Matrix-vector Multiplication

Next, suppose M E C(n,+n2)x(k+ 12), and we partition in the obvious way as

[ M11 M12] "

I M21 M 22

with Mij E Cnixk. Now if for i = 1,2 we have ui E C k' and vi E C', and furthermore
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[V2 = M [ then we draw this as

M11 M12 M1, M12 .

UiL2 M i2 or V 2M[:U 2

----0M21 M22-- M21 M22 ' ,

Figure 2.2 Pictorial Notation for Partitioned Matrix-vector Multiplication

When we need the norms of vectors in C' or R', unless otherwise stated, will represent

the usual euclidean norm. That is, for v E C", with components vi E C, 11V11 2 := EIVi, 2.i=1

Also, consider a generic finite dimensional, time invariant, linear system, described by

=Ax + Bu
y =Cx + Du.

Note at every instant in time, i, y, u, and x are related by the simple matrix-vector mui-
tiplication

Ai I x

which in our notation is drawn as

U x

C D -

Figure 2.3 Pictorial Notation for Time Invariant, Linear System

Now, onto the problem. Consider a n dimensional, linear system G6, parametrized by k
uncertain parameters, 61,... , 4, and described by the following uncertain equations

;i A + EbiAi X + B + E iBi U
i=1 i=1.

Y = ( k~ s : x ( B ± k 2  
(2 .1 )

H = C + EiCi x+ D+ EiD) U.
i=1

Here A, Ai E R "' , B, Bi E RnXnu, C, Ci E RnyXn, and D, D, E R n ×'
n

.

The various terms in these state equations are interpreted as follows:

* The nominal system description, given by known matrices A, B, C, and D.

* Parametric uncertainty in the nominal description.

1. All of the uncertainty in the model is contained in the k scalar parameters

6i,..., bk. Various assumptions on these parameters are possible. For the pur- 'U

poses of this example, we will assume only two things - for each i, 6i E [-1, 11, 0

itd
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and they do not vary with time, they are fixed (though in each instance that
the system is operated, the parameters may assume different values, so long as

they are in the unit interval).

2. The structural knowledge about the uncertainty is contained in the matrices

Ai, Bi, Ci, and Di. These reflect how the i'th uncertainty, bi, affects the state

space model. By scaling the entries in these 4 matrices, the relative effect that

3i has on coefficients is varied. Choosing these matrices is the engineer's job,

and is based on her knowledge of the physics that have led to the state space

equations.

2.2 Linear fractional transformations .0

Consider the "perturbed" A matrix (or B or C or D). The j1 element of this matrix is
of the form Afjq + E=, Ai,,,i • Note, that this is an affine, linear function of the

uncertainty.

Can this model be expressed in the following form?

i = Ax + Bu + B 2u 2

y = Cx + Du + D12u 2  (2.2)
Y2 = C2x + D21u + D22u 2
U2 = diag [65iI, 62I,... , bkI] Y2

In other words, can we define some additional inputs, u2, and outputs, Y2, so that all
the uncertainty in the equations (2.1) is represented as a nominal system, Go,,,, with the g

unknown parameters entering as the feedback gains that close the loop from the additional

outputs to the additional inputs? This is shown in the figure below.

x x

u yA B B
U ABB2

U2 _Y2 - DD 2
U2 C2  Y2

8I

Figure 2.4 Pictorial Notation for Uncertain System

Recall the diagram for the generic linear system. Our problem is then reduced to finding %
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a real matrix M such that for every set of parameters 6,, the following picture is true,

X6

A+Z,A, B + 7,SiBi

C+FSiCi D+J;SjDi
U- 3' U2  .72

Figure 2.5 Representation of M

In this case, Gnom, would just be

* 0

Figure 2.6 Diagram for Gnom

Finding such an M is quite easy. Consider a matrix M partitioned in a 2 x 2 fashion as

0
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below left.

z, 11  V1M11 12 0M11 Ml12
M 2 1 M2

Figure 2.7 Pictorial Notation for a Linear Fractional Transformation

If we close the bottom loop of this with a matrix A (as above, right), then the matrix

re la tin g z to v , is - 2

M11 + M12A (I - M2 2A 1

assuming that the inverse exists of course. Since our parameters enter equation (2.1) only

affinely, we guess that our M 22 can be chosen to be zero.

Indeed, for each i, let qi denote the rank of the matrix

P [ A= jj i E R(n+nV)X(n+n.)  (2.3)

Then Pi can be written as
Li Ri(2.4)

where Li E R Wi E R' i , RE , RX, and Zi E Rnuxqi .

Hence, we have

6~ P 1 [ 1  ] [6ijq] [ R '_ ]T .
2 5

pT 6i zi L (2.5) % :

and therefore "our" M11 + M1 2 AM 2 1 , which is

[ k k 1
A + E6,Ai B + Z B,

i=1 i~=1 I,'

k D+kD

in fact looks like

M2 AM21

A~ B] + L [... Lk []

IC.~ D ,..W
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Therefore, correct definitions for the matrices B2, C2, D12, D21, and D22 are

DB2 = L1 L 2  " Lk]

D2 WI W2 .. Wkji
C2 =[R R 2 .. - ]

D 2 1 = ZI Z 2 ... Zk

and D22 = 0.

The uncertainty is contained in the block diagonal matrix A. We define the "block struc-

ture" associated with this system as

A := {diag [6, 1,, ... , 6 kql,) : bi E [-1,1]} (2.6)

Note that if we had not done the rank reduction (equations 2.3, 2.4, and 2.5), then this

structure would, in general, have much larger dimensions.

How would an uncertain parameter enter in a multi-rank way? Consider a system with

several different components, each of whose models are affected in a linear fractional way

by an something external to the system. For instance, the force/torque producing effec-

tiveness of an airplane's controllable surfaces (rudder, aileron, canard), are affected by

ambient dynamic pressure. Suppose that for each surface, the model of its effectiveness

has dynamic pressure entering in an affine, linear fashion. Then each surface has an un-

certainty associated with pressure. Since these different surfaces affect the airplane in

different manners, there is no way to isolate the effect of dynamic pressure as one scalar

bbp. Several of these identical scalars are necessary, and together they form a repeated

scalar block.

Remarks: Recall that the uncertain parameters entered both the state equations and

ouput equations in an affine, linear fashion. There is a more general model of un- 7

certainty which also leads to the "feedback" representation found in equation (2.2).

Each entry in the state space matrices can be a fraction of affine multilinear

combinations of the uncertain parameters. For example, a particular per-

turbed entry of one of the matrices may look like •

fnon,,, + f1616 + f2+ 3 (2.7)

1 + h 1 6 2 + h 2 blb 2 6 3

where the f's and h's are known, and represent how the uncertainty affects the

matrix entry (our example in this section has all of the h's equal to 0). -

These models for uncertainty are called linear fractional, and will be explored

more in section 8 and 9. Unfortunately, the added generality in (2.7) as compared

del
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to (2.1) introduces some difficulties - the nice uncertainty rank reduction procedure
(equations 2.3 - 2.5) becomes quite difficult. In fact, it is equivalent to finding

minimal realizations of multidimensional (several independent variables) systems.

In some simple problems, it is easy to extract the minimal number of uncertainties

by inspection. More generally, it is possible that an uncertainty structure much

larger (parameters entering many times) than is really necessary is obtained. From

a computational viewpoint, this is undesirable.

Also note that any linear connection of several uncertain components (inputs to
separate components being linear combinations of outputs of separate components)

will have exactly the same form: all of the parametric uncertainty can be isolated in

a block diagonal "feedback" around a known, fixed system.

Now, to motivate y, and the theorems in section 8, suppose we are given an uncertain
plant in the form (2.2), and a linear, time invariant, finite dimensional (LTIFD) controller

that stabilizes (feeding back y to u) the nominal plant. Under what conditions does it

stabilize all of the perturbed plants? First, let the stabilizing controller be governed by

= A, + B~y ; u = CC4. We have chosen it strictly proper just to simplify some of the

equations (all of the robustness questions can be addressed for controllers with D terms).

Define the following matrices

+ BCC B2

M11 :=[BC M12C:= B (2.8)

M21:= [ C2 D21C M2 := D22 (2.9)

With,:= , it is straightforward to check that the perturbed closed loop system is

'1 21M2

Figure 2.8 Pictorial Notation for Perturbed Closed Loop System

Hence, to guarantee robust stability, we need to verify that for all A E A (recall A is the

appropriate uncertainty structure, equation 2.6), the eigenvalues of the matrix

M + M12A (I - M 2A)
-' M21  (2.10)

are in the open left half plane. Alternatively, if the problem had been formulated in discrete

time, then the condition would involve making sure the eigenvalues remained inside the

unit disc. Actually, this type of test is more directly handled by i. The p test (Theorems
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9.1 and 9.7) is applied to the whole matrix M, and involves not only the structure A

representing the uncertainty, but an augmented structure which makes sure that the

test checks the largest eigenvalue of M11 + M12A (I - M 22A)
- M21 , and not a different

quantity, such as the maximum singular value of this perturbed matrix. This is made

clearer in section 8 and 9. As we have mentioned though, computation of 'U is difficult,

and that is the real issue in using any of the results.

2.3 Real vs. complex perturbations

All the theory presented here is appropriate for robustness analysis with complex per- •

turbations, and not for real perturbations (as in the example in this section). Hence,

the typical assumption we will impose on the bj in A in (2.6) is actually 6i E C, 161 1

for each i. That is, instead of viewing them as fixed unknown real parameters, they are

treated as fixed unknown complex parameters. As we will see in section 11, this is also 0

equivalent to treating them as stable, finite dimensional, linear time invariant systems,

with 16i(jw)l < 1 for all w E R. Therefore, if a particular problem has uncertainty that

is definitely real and not dynamical (ie. complex), the methods here will be conservative,

since the smallest offending (destabilizing) perturbation will almost always be complex.

It is often very natural to model uncertainty with real perturbations, when, as in this

section, the real coefficients of a differential equation model are uncertain. It is important,

however, to remember that such parametric variations are in a model, not in the physical

system being modeled. Models with real parametric uncertainty are used because, in prin-

ciple, they allow more accurate representation of some systems. Complex perturbations

are typically used to represent uncertainty due to unmodeled dynamics, or to "cover" the

variations produced by several real parameters. In the p framework, complex uncertain

blocks also arise for problems of robust performance.

Although computation of 1L for complex perturbations is nontrivial and there are important

outstanding issues to be resolved, as indicated in this report substantial progress has been

made and s is being applied routinely to large engineering problems. Computation of a

for real perturbations is fundamentally more difficult than for complex perturbations.

The major issues in computing p, or its equivalent, are the generality of the problem

description, the exactness of analysis, and the ease of computation. With existing methods

for real perturbations, you get to choose two. A general and, in principle, exact method is

a brute force global search using a grid of parameter values (e.g. Horowitz, Ackermann).

This inevitably involves an exponential growth in computation as a function of the number

I
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of parameters and taking fewer grid points to avoid this gives up exactness. Progress

is being made in reducing the computational burden of exact methods ([deGS], [SidG],

[SidP]), but nothing suggestive of polynomial-time algorithms is available.

An approach to obtaining exact results with modest computation is to restrict the problem

description. The best example is Kharitonov's celebrated result for polynomials with

coefficients in intervals. Unfortunately, it is almost impossible to find models with any

engineering motivation that fit the allowable problem description. Again, progress is being

made in this direction by allowing more general uncertainty descriptions at the expense of

more computation.

The approach taken in [FanTD] could be characterized as being very general and computa-

tionally attractive, but potentially inexact. Following the methods developed for complex

y, the main idea is to get upper and lower bounds using local search methods which are

computationally cheap, but may fail to find global solutions. One then seeks to prove that

the local methods yield global solutions, or that the bounds one gets are tight enough to

be of value in problems of interest. This strategy has been very successful for complex yu

and appears to have promise for the real case as well, although it is clear that the real case

is much more challenging.

M

q

-s

(~
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3 Structured Singular Value

3.1 Definitions

This section is devoted to defining the structured singular value, a matrix function denoted

by p (.). We consider matrices M E C ' . In the definition of i (M), there is an underlying S

structure A, (a prescribed set of block diagonal matrices) on which everything in the

sequel depends. For each problem, this structure is in general different; it depends on

the uncertainty and performance objectives of the problem. Defining the structure

involves specifying three things; the type of each block, the total number of blocks, and

their dimensions.

There are two types of blocks-repeated scalar and full blocks. Two nonnegative integers, s

and f, represent the number of repeated scalar blocks and the number of full blocks, respec-

tively. To bookkeep their dimensions, we introduce positive integers rl,... , r.; mi, ... , m.

The i'th repeated scalar block is ri x ri, while the j'th full block is mj x mj. With those

integers given, we define A as

A ={diag , . , A : 6 C7A E CMXmJ} C C"x"  (3.1)

For consistency among all the dimensions, we must have
* I

Zr, + Emj =
i=1 j=l

Often, we will need norm bounded subsets of A, and we introduce the following notation

BA = {A E A: &(A) :_ 1} (3.2)

Note that in (3.1) we have put all the repeated scalar blocks first. This is just to keep the N.

notation as simple as possible, in fact they can come in any order. In any case, we will ,

see that every problem can always be set up (by rearranging rows and columns of M) so

that they appear first, so we are not losing any generality in this formulation. Also, the full .

blocks do not have to be square, but restricting them as such saves a great deal in terms

of notation. This restriction is without loss of generality, since y for nonsquare blocks can S

be converted to u for square blocks by adding rows and/or columns of zeros to M.

Definition 3.1 ForM E Cx n, (same dimensions as the elements of A) p,, (M) is defined

p, , (M) :=min {J (A): det(I + MA)=0} (3.3)

AEA

unless no A E A makes I + MA singular, and then y&, (M) = 0.

-N N~) in .I



14

An alternative expression follows almost immediately from the definition.

Lemma 3.2 u&(M) = max p (MA)

In view of this lemma, continuity of the function p : C"" --+ R is apparent. In general,

though, the function p : C"" -- R is not a norm, since it doesn't satisfy the triangle

inequality. However, for any a E C, jt (aM) = ja jp (M), so in some sense, it is related to

how "big" the matrix is.

We can easily calculate t, (M) when A is one of two extreme sets.

" If A = {6I: 6 E C} (s=1,f=O,ri=n), then y& (M) = p(M), the spectral radius

of M.

Proof: The only A's in A which satisfy the det (I + MA) = 0 constraint are neg-

ative reciprocals of nonzero eigenvalues of M. The smallest one of these is

associated with the largest (in magnitude) eigenvalue, so, yA (M) = p (M).

" IfA = C " 'x (s=0,f=1,mi=n), then ,A(M) = (M)

Proof- If a (A) < -- ,then a(MA) < 1, so I + MA is nonsingular. Applying
equation (3.3) implies #, (M) < & (M). On the other hand, let iu and v

be unit vectors satisfying Mv = a (M) u, and define A -- yvu . Then

(A) = j and I + MA is obviously singular. Hence, IA (M) > & (M).

Obviously, for a general A as in (3.1) we must have

{6I: 8 E C} C A C C"". (3.4)

Hence directly from the "minimization" in the definition of j, and the two simple cases

above, we can conclude that

p (M) <5 U& (M) < & (M) (3.5)

These bounds alone are not sufficient for our purposes, because the gap between p and

a can be arbitrarily large. We refine them by considering transformations on M that do

not affect a (M), but do affect p and a. To do this, define the following two subsets

of CnXn

Q ={ A: Q*Q = I} (3.6)

F,.
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V = {diag [D,,... D... ,dfIm,]: D, C C ' 4 is invertible, d, # 0} (3.7)

Note that for any A E A, Q E Q, and D E V,

Q*EQ QAEA AQEA &(QA)=&(AQ)=&(A) (3.8)

DA =AD (3.9)

Consequently, we have:

Theorem 3.3 For allQ EQ and D EV

/AA (MQ) = IA& (QM) = jA (M) = p,& (DMD-1). (3.10)

Proof: For all D E ) and A E A,

det(I + MA) = det (I + MD- 1 AD) det (I + DMD-'A) .

since D commutes with A. Therefore y,& (M) = u, (DMD-'). Also, for each

QE Q,det(I+MA)=0 if and only if det(I+MQQ*A)=0. SinceQ*AEA
and a (Q*A) = & (A), we get p, (MQ) = yA (M) as desired. The argument for

QM is the same. 0

Therefore, the bounds in (3.5) can be tightened to

maxp(QM) <_ ,A (M) -< inf a(DMD-') (3.11) ,
QEQ DEV

An important question is "when are the bounds in (3.11) actually equalities?". This

question is a nontrivial one, and a large portion of this report is devoted to answering it.

The results we will subsequently show are

* The lower bound, maxp (QM), is always equal to p, (M). Unfortunately, the func-

tion 1(Q) := p(QM) has local maxima which are not global, and computing the
global maximum of such functions is, in general, impossible.

e In contrast to the local phenomena described above, the function u(D) := r (DMD- ')

does not have any local minima which are not global, so computing inf , (DMD- )

is a reasonable task. In general though, ,& (M) < inf &(DMD-). For certain
DEVD. ) o eti

block structures A, equality always holds. The general situation is summarized in

the table below.
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fuL,
= 0 1 2 3 4

61, S=
yes yes yes no0 easy Sec. 7.1.1 Sec. 7.1.3 Sec. 7.1.2

yes yes no no
I easy Sec. 7.2 Sec. 12.2 Sec. 7.1.2 no

2 Sec. 12.1 no no no no

When is the upper bound, inf.& (DMD - 1), always equal to p ?

The section number in each box indicates where the detailed analysis can be found

in this report.

3.2 Simple results & special cases

In this section, we derive simple expressions and bounds for y in a few special cases. We

begin with a class of matrices for which we can derive an easy, explicit expression for P.

This will be done directly from the definition, independent of the upper and lower bounds

just described.

Theorem 3.4 Let n1 , n2, m, and m 2 be positive integers, and consider matrices of the Z

form [0 M1U]2 (3.12)

where M 12 E C11 112 , M 21 E C12X", and the zero entries are of the appropriate dimensions.

Consider a perturbation set A of the form

A = Adiag[AlA2 1 e ix E A 2 E C2x ' 2}x

ie. two full blocks. With respect to this structure,

it (M (M 12)&(M 21) .

Proof: Let M be any matrix as in (3.12), and let A E A. It is straightforward to verify

that det (I + MA) = det (I - M 21A 1M1 2A 2). Denote & (M 1 2)5 &(M 2 1 ) by 7, and

suppose that A E A is chosen with &' (A) < !.1 Then & (M 2 1 A 1 M 1 2 A 2 ) < 1 which

means that I - M 2 1 AIM 2 A 2 is nonsingular, and hence I + MA is nonsingular. This '

gives a lower bound on the "minimum" part of the definition of u, namely

min{ (A) :det(!+MA)=0}> -
AEA 7

%* ~*%'V% %7"~ '%%1MAN



17

Obviously then, from (3.3)

p(M) _ (3.13)

Actually (3.13) is an equality; to see this let u, fi, v and i5 be unit vectors of appro-

priate dimension that satisfy

M12V=&(M 1 2)u , 2 (2)i

Define the dyads 1,1
A-- vi , /A 2 = - VU.

Let A = diag[A1 ,A 2 ]. Obviously r (A) = , and (I- M 21 AlM 12A2 ) ii =0, hence

I + MA is singular, and therefore p (M) - . 0 0

The same result was proven in [NetU], using a main result of [Doy]. Here, we used only

the definition of i and simple linear algebra.

The next example gives a easy-to-compute upper bound for rank deficient matrices with

arbitrary block structures.

Theorem 3.5 Suppose M E Cn'n has rank r, r < n. Then we can write M = LR*,

where L, R E C" 'r. Partition L and R compatibly with the block structure as

L /R R. (3.14)L K, R= S,

so that Li, E C" x and Ki, S E C 'emx ' . Then

s .f -

i (M) < Z r(R*Lj) + L & (Sj) a (1Kj).
i==1

Proof. For any A E A

det (I + MA) = det (I + LR*A)
= det (I + R*AL)

(3.15)
- det I+ ,RLi +;, A jK.i= I j=1t

If, for some 3 > 0, we can show that A E A, & (A) < 1. implies that

\i~l j=l
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then for all those A, det (I + MA) # 0 (by (3.15)) and hence u 0.

It is easy to find such a 3. Suppose that A E A and 6

<A 
1

a((RL) + L (SD i( )
i=1 j=1

Then

" RLi + L, S.*A.K :5 J.'iI&"(R-Li) + ,(AS);(Sj)5(j) < 1

Therefore #(M) < Z?(R;Li) + (S)3(I4)"

i1 3=1

Theorem 3.6 Let M E C'11 be given, and suppose that M has rank equal to 1. Write

M = LR*, and partition L and R compatibly with the block structure as
L, R,

L= R = (3.16) .
1, S,

L= K1  S .

Kf J :

so that Li, PiE Cxl and Ki, Si E C".x1. Then

A (M) = IRTLI + L IIS, II IIKjII. (3.17)
t-I j---1 (*.

S I

Proof: For notational simplicity, let - := IR*L, I + L JjSil JlKj3 . Obviously from
i=1 j=l

theorem 3.5 we already have p < -. With M a dyad, we will actually show that

it is an equality. For each i < s, choose q E C, Iqij = 1, so that qiR*Li is a real,

nonpositive number. Similarly, for each j _5 f, choose a unitary matrix Q, so that

S;QK = -ISjIj IlKi!. These two steps can always be done. Suppose that -Y # 0.
Then define

1A := - diag [qjI,,,..., q8I,, Q,..., Qf] E A (3.18)

1
By construction, &(A) =-, and I+MA is singular, therefore pA (M) - , so using

theorem 3.5, we get the equality as claimed. .

6



19

4 Proof that lower bound achieves t

Recall the two bounds we derived in section 3.1.

maxp(QM) < p (M) < inf& (DMD-')

A main result of [Doy] is that for any block structure A as defined by (3.1), the left hand
side of the bound above is actually an equality: V.

Theorem 4.1 Let A be a given block structure, and let the set Q be defined by (3.6).

Then for every matrix M of appropriate dimensions,

p (M) = max p(QM). (4.1)
QEQ

We begin by stating a well known result from complex analysis called Rouche's theorem

[Rud].

Theorem 4.2 Let r be a simple closed contour in the complex plane, C. Let f and g be
functions which are analytic inside and on r. If Ig'z)l < If(z)l on r, then f and f + g

have the same number of zeros inside r. 0

This is used in proving the next lemma, which is the well known result stating that the

roots of a polynomial are continuous functions of the coefficients of the polynomial.

Lemma 4.3 Let f(z) = E!' aiz ' be an n 'th order polynomial, a,, # 0. Let zl, 2, ... , ,,
be the zeros of f. For any E> 0 and any integer m > 0, there exists a 6,, > 0 such that

if g(z), defined by

g(Z) = ib ,'

has coefficients bi E C which satisfy Ibil < 6,,,, then there are n zeros of f + g, labeled

ziz-,... , , that satisfy j i - i < .

Hence the zeros of f depend continuously on the coefficients of the polynomial (even '

leading coefficients which are zero).

Next, we shift our attention to polynomials in several dimensions, that is, polynomials

taking C' C. If z E C', we let Izikoo := max lzil. For p:Ck-*C, a polynomial, define 5

OP as

O= min {lzII. : p(z) = 0} (4.2)
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/3 is the norm of the "smallest" zero of the polynomial. The next lemma is from (Doy].

Lemma 4.4 Let p be a polynomial from C' -+ C. Define /3 via (4.2). Then there exists

a z E Ck such that Iz;i = ,3 for each i, and p(z) = 0.

Proof: Let i be a minimizing solution, so p(i) = 0 and [Illj = /p. If IiI = #p for all i,

then we are done, so assume that I ,I </Op. Now we can (always) write
n%

p(z) A ~p(ZI,. -,Zr..., Zr+l,.. ,ZIO)Zr (4.3)
i=O

I

where the p, are polynomials in all the variables except z7.

For notational purpose, we denote Pi as the polynomial pi evaluated at i (of course,

it doesn't depend on i,), that is

and we let L denote the set of integers {1,2,... ,r- 1,r + 1,...,k}.

There are Lhree situations we need to consider:

1. Suppose that for every i, Pi = 0. Then, regardless of the value of r, p(i) = 0.

In particular, the magnitude of r, may be adjusted to be Op and i will still be

a root of p.

2. Suppose that Po # 0, but Pi = 0 for i > 1. Quick checking reveals that this is

not possible, since then p(i) : 0 as we need.

3. Suppose that for some i > 1, #i 6 0. Then i, is a zero of the nontrivial %

polynomial q(z 7 ) = -iz. Let e > 0 with [i + E < Op. By the lemma, we
i=O p

can find a b > 0 such that if <0, - < for each i, then the polynomial
n

q(z,) := 4iz' would have a zero , satisfying li, - il < F. Since the pi are
i=O

continuous functions of their k - 1 arguments, we can find a > 0 such that if

[i - id <6 for all i E L, then there is a Z,. with 12, - il < , such that

ZPi(CI,'' 0r-1, r+,, • • , 0
i=0 I1 ,
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In particular, we could choose all the Cj to have smaller magnitude than the .

respective i. Therefore the point 0

E_- Ck

Cr+l 0

~.r%

has 11,,. < p, but is a root of p(z). This contradicts the definition of flp,
hence this situation cannot occur. 0

Therefore, we have shown that if i is a minimizing solution, ie, [j 11oo = 0' where

= min {IzI p(z) = 0}, then we may as well assume that each of the components

of i has magnitude equal to OP. 0

This is the lemma necessary to prove that the lower bound is an equality.

Theorem 4.5 Let A be a given block structure, and let Q be defined as in section 3.1.

Then for every matrix M of appropriate dimensions,

max p(QM) A M
QEQ

Proof: This is obvious if it (M) = 0, so we will assume that p (M) > 0. Let A E A be a

minimizing solution, so det (I + MA) = 0, and & (A) =-1 . Do a singular value

decomposition on each block that makes up A. This gives U, V E Q, and a diagonal

E E A, such that

det (I + MUV*) =0

Since t E A and is diagonal, it appears as

di g i] ,. o, .,

for some complex numbers Si and &j, and w = m= in. (recall the j'th full block is

mj x in,, hence each full block contributes mj of the a's)

Consider s + w complex variables, zj,... , z,+,,. Define a variable E by

E = diag [z ,, II,, z, , .. I zs+,] W)

:11 

el

; '4491N
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Then det (I + MUEV*) is a polynomial on Cs+w, since the determinant involves

only multiplications and additions. By hypothesis, a minimum norm root of this

polynomial has an infinity norm (as defined above) of -. =: Let 2 be the

minimizing root with all components of equal magnitude, namely Y. Then we can

write = 4 for some t' E Q. This gives

det (I + -yMU$V*) = 0.

Obviously p(MUtV*) p (M), and the product U$tV* E Q, so we are done.

-N

- - -~~ ~ V - ~ ~ -I
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5 Preliminaries for study of upper bound

The next major undertaking is a careful study of the upper bound: its computational prop-

erties, and the relation between it and the upper bound. The purpose of this section is to
collect some mathematical facts that we will need. All of the upcoming material appeared
first in [Doy], although the theorems for the upper bound there are less general. Here we

generalize the theorems in [Doy] to include block structures with repeated scalar blocks.

Initially, we will focus on the a (DMD-1) upper bound and begin by reparametrizing it.

5.1 Reparametrization of the upper bound

For the sake of computation, and proving some theorems, we must eliminate a degree of
freedom present in the D's as they are defined now. From now on, we will assume that

there is always at least 1 full uncertainty block, so that f > 1. The case with s > 2 and
f = 0 is handled separately in section 12.1.

First, note that for any nonzero a E C, and any D E ,

(DMD-') = & ((aeD) M (aD)-') . (5.1)

Hence, in calculating the infimum, we can use this scaling, and without loss in generality, r

always assume that df = 1. Since we will have occasion to use it again-though, we will
now refer to the original set V as defined in (3.7) as V,.

In addition, we may assume that the other di are positive, and the Di are positive definite.

To see this, take D E D and do a polar decomposition, D = UP with U unitary and
P = P* > 0. Obviously

(D= - (UPMP-1U-) ( (5.2)

by the unitary invariance of &. Hence for any D E D, there is a positive definite, hermitian

DH E V that achieves the same &. Therefore, the following definition for VP

Vp= {diag [D,... , D., di,,,... df_1Imj_, Imj A = Di* E C?,iXri > 0 A > 0}
(5.3)

leaves the infimum the same. Note that implicitly, the last block has df = 1 as we

indicated above.

We do one further reparametrization via logarithms. Recall that

{eW : W* Cmxm} = {D: D = D* E Cmxm, positive definite } (5.4)



24

This simply says that the set of exponentials of all hermitian matrices is equal to the set

of positive definite, hermitian matrices. The obvious block diagonal version of this fact

allows us to redefine D as

V :={diag [D ..... ,,dim,... ,df~j~mf_1.im~j :A= Dj* E Cr'xre ,di E RI}(5.5)

and the upper bound as

p,& (M) S inf & (eDMe-D). (5.6)DEV

We note that V) is a finite dimensional, real (scalar multiplication must be real) vector

space.

5.2 Convexity of the Upper Bound

In this section, we prove that the reparametrized upper bound is convex in the variable

D. Therefore, any local minimum is also global minimum. Hence gradient optimization

methods, which can yield local minima, can be used to nonconservatively compute the
upper bound for p. The first proof of this can be found in [SafD]. Here, we take an

approach from [ChuD].

Definition 5.1 Let X be a vector space. A function f : X --* R is convex if for every

X,Y E X, A E [0,1]
f(Ax + (1 - A)y) _ Af(x) + (1 - A)f (y)

The next lemma gives a sufficient condition for a continuous function to be convex. It is

fairly intuitive and is taken from [ChuD]. The proof is in the appendix.

Lemma 5.2 Let f: R -+ R be a continuous function, and suppose for each to E R, there
exists a twice differentiable function go R-- R, such that f(to) = gto(t0 ), f(t) _> gto(t) for

alit - Rand > 0. Then f is a convex function.

We apply this to our situation.

Lemma 5.3 For every D E V, the function f R- R, f (t) a (eDtme-Di is con vex.

- 1 -F- - ' V - V ' -S

JRK
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Proof: We just need to verify the hypothesis of the lemma. Let t. be given and let uto

and Vt. be complex unit vectors, of appropriate dimensions such that

DtoM M Dto -- rDt( Me-Dto)

For later use, we will let o, denote & (eDtoMe-Dlo), and Mo := eDtoMe-Dto.

Define gt.: R--+ R by
gto(t) = Re [Uto0e Me-Dt°]0 (5.7)

Obviously, f(to) = gto(tO), and for all t E R, f(t) > gto(t). Differentiating (5.7) twice

gives dgto •

dt2 t= [o -AD] [:L -M]D: 0  (5.8)0

Recall that & (Mo) = o,, hence the matrix in (5.8) is positive semidefinite, and
therefore !-s > 0. By Lemma 5.2, f is convex. 0

dt2 It=t

Trivially, we wrap this all up with

Lemma 5.4 Consider the function h:D--*R, h(D) = j (eDMeD). Then h is convex.

Proof: Let DI and D2 be arbitrary elements in D, and let A E [0, 1]. We need to show

that

h ((1 - A)D1 + AD2 ) < (1 - A)h(D 1 ) + Ah(D 2)
Define f:R-+R by f(t) := h((1 - t)D 1 + tD 2 ) = ebt (eDlMe-DI) ebtI where
b is definedD := D2 - D1. Now, f is convex by Lemma 5.3, therefore for every

tE [0,1]
f(t) < (1 - t)f(0) + tf(1) (5.9)

Note that f(0) = h (DI) and f(1) = h (D 2). Therefore, setting t = A in (5.9), we
have 0

h ((1 - A)DI + AD2) _ (1 - A)h(DI) + Ah(D 2) (5.10)

as desired. "

'k.0
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5.3 Directional derivatives of coalesced singular values

The minimization problem for the upper bound is discussed here. We calculate the first

derivatives of singular values of e"tMe- D, for given D in V. The resulting formula will be

used in section 7 to find aD E V such that fort >0, sufficiently small, & (eDMe-D) <

& (M), in other words, a descent direction for a. Iterating on this is a method to calculate

the upper bound. In general, the minimization for the upper bound will drive the top

singular values together, since we are minimizing a "max" function. Therefore, we must

carry out the derivative calculations for coalesced singular values (ie. multiplicity greater
than 1). Derivatives of distinct singular values are just special cases of the following results.

A result ;,om perturbation theory, ([Kat] for the theory, [FreLC] and [Doy] for this appli-

cation) that we will use freely is that if T: R - C " ' is an analytic function mapping the

real line into hermitian matrices, then there exist analytic matrices U(.), and A(.), such

that for all t, U(t) E C""", U-(t)U(t) = I, A(t) E R "X', A(t) diagonal, and

T(t)U(t) = U(t)A(t). (5.11)

In other words, the eigenvalues of an analytic hermitian matrix are analytic, and there

is a choice of orthogonal analytic eigenvectors as well. We use this result to derive an

expression for the derivatives of nonzero singular values of an analytic matrix.

Let W: R-- Cn xn be an analytic function of the real variable t. Suppose ar is a nonzero

singular value of W(O) with multiplicity r. Then a2 is a eigenvalue of W(O)W*(O), also with

multiplicity r. Hence, there are analytic functions U.(.), Ub('), E.(-), and Ab('), C > 0, such
that for all t E (-C, f), U,(t) E C 'X ', Ub(t) E Cnx(n- ), Fa(t) E Rrxr, Ab(t) E R(n - r)x(n - )

with both E. and Ab diagonal and nonnegative for t E (-E, E). At t = 0, E.(0) = a/1, and

none of the diagonal entries of Ab(0) are equal to a2. We also have that for all t E (-E, E)

] [ Ubt) InXn (5.12)]',,

and [ U Ubtt

W(t)W*(t) = U.(t)El2(t)U:*(t) + Ub(t)Ab(t)U;(t) (5.13)

We want to calculate the derivatives (at t = 0) of the r singular values which are coalesced

at a at t = 0. Of course, these are just the diagonal entries of ta, which itself is diagonal.

Roughly speaking, we will differentiate (5.13) to get an explicit formula for E.

Dropping the explicit t dependence, and post-multiplying (5.13) by Ua(t) we have

WWU, U a (5.14)

- ,, - .-* , -*%. * , . It ,,,, . ,M 
o

.. ,M , , , . , . - r- .-j -, .. - I . - -. ,,,, -, ' -
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Differentiating this gives

WW*Ua + WW,*U0 + WW*U0 = &UF + Uat2aX, + Uaao2

Premultiply this by U., and evaluate at t = 0. Recall that at t = 0, E" = 01'. Hence, at

u:ww'u + u:wwu + ,u: U = 0,2 U: " +"2ot

Two terms cancel, and since a 0 0 by assumption, we are left with

t = 1u- (Ww + we-) uv (5.15)
Actual computation of the derivatives requires one additional computation. Consider a

singular value decomposition of W(O),

W(O) = oU1 V1 " + U2 E2V (5.16)

Since the singular vectors associated with repeated singular values are not unique, U,

need not be equal to U. (0). But, both have orthogonal columns, and they span the same

subspace in C', therefore, there is a unitary matrix K E CrX? such that

U.(O) = U1K (5.17)

Substituting (5.16) and (5.17) into (5.15) gives

K K* 1 (y + y-W-v 0  (5.18)

Since K is unitary, this is a similarity transformation, hence the derivatives of the r singular

values coalesced at a are the eigenvalues of

(U' (u V1 + v,-VV -U)
Let us do the above calculations for the special case we need.

Theorem 5.5 Suppose W(t) is of the form eDIMeDt where D E V and M is given.

Obviously W(O) = M and IW(O) = DM - MD. Hence if r-_

W(O) = M = olUIVI* + U2 2V2 (5.19)

then the derivatives of the clustered singular values at a are the eigenvalues of

o'Uj DU - oVI*DV (5.20)

In particular, let A,, A2,..., A, be the eigenvalues of UjDU - Vr*DV . They are real

because this matrix is hernitian. At a nonzero value of t, the r singular values that were

a at t = 0 satisfy

ai(t) = a(1 + Ait) + gi(t) (5.21)

where li it 0.
t-0 t
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Hence if we can find a D E V with all the eigenvalues of U,DU1 - V1*DV1 negative,
then by moving a small amount in that direction, all of the singular values in the cluster

will be reduced.

After reviewing some results from convex analysis in the next section, we will address the

problem of finding a D E V such that for small t, all of the singular values in the cluster

are reduced. As we have shown here, this is equivalent to finding a D E E) such that all
the eigenvalues of U,*DU - VI°DV are negative.

5.4 Convexity

This section is devoted to some simple results from convex analysis which will subsequently

be used to find D E V such that all the eigenvalues of U*DU - V*DV are positive. This

gives a descent direction for a (eDMeD). All of the results here are from [Roc].

Let X be a real, finite dimensional vector space, with inner product (., .) X x X - R,
and let V be a compact subset of X. The main question this section addresses is "does
there exist a point 5 E X and # > 0 such that min(!, y) - 3?"

The following definitions and results are standard.

Definition 5.6 A subset V C X is convex if Au + (1 - A) v E V for every u, v E V and

A E [0,1].

Definition 5.7 For a subset V C X the convex hull of V, co (V) is the smallest convex

set containing V:

co(V)= n " (5.22)
-FDV

Yconvex

Lemma 5.8 For all V C X, co (V) is convex. If V is convex, then co (V) = V. If V is

compact, then co (V) is compact.

Lemma 5.9 The convex hull of V C X is all finite convex combinations of points in V.

That is

co(V) = Eaj :mEN,aj[0, 1], = 1, xi e V (5.23)
i=1

Lemma 5.10 Let V be a compact subset of X. Then there is a unique point - E co(V)

such that [[tI = min 11Y11 Y E co (V)}. When clear, we denote this as t= min (coV).
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Lemma 5.11 Let V be a compact subset of X, and leti G co (V) be the unique minimizer

desribed above, ie. jI1 = min {Illyll : y E co(V)}. For any z E co(V), (z,;) 2 I 112.

Lemma 5.12 Let x E X. If j[xjz > 11min (coV) 11, then there is a y E V such that

(xlY) < IIXl 2.

These give rise to the main theorem.

Theorem 5.13 Let V be a compact subset of X. There exists i E X such that min(-, y) >
0 if and only ifO co(V).

The minimum point of the convex hull of a set V can be found via an iterative algorithm,

due to [Gill. Important extensions of this are found in [Wol] and [Haul. All the algorithms

have one main computational requirement: for each x E X, we need to be able to generate

a point y., E V such that

(X Iy) = min (x, y) (5.24)

Note since V is closed, there always is such a y., though it may not be unique.

The algorithm from [Gill is as follows: Define a sequence {xj}'_ in the convex hull of V 0

via the following rules:

a.1 Pick any point xi E coV. In particular, x, can be any element of V.

a.2 Given xi, pick yi E V to minimize the inner product as above in equation (5.24).

a.3 Define xi+l = min co {xi, yi}. Obviously, xi+i E coV. Return to a.2.

Hauser's algorithm [Haul makes a more intelligent choice for xi+,, using not only xi and yi,
but past values of y, as well. It is a generalization of Wolfe's algorithm [Wol] for polytopes.

In any event,

Claim: The sequence {xj} converges to the minimum point in the convex hull of V.

Proof of claim: Obviously, the sequence {x,} has I[xj+jII _ 11x,[[ for each i. Therefore

both sequences {xj} and {yj} are bounded, hence we can choose a subsequence {nk} so ..k k '

that x,, - + and y, -- .. Since both coV and V are closed, we have t E coV and 9 E V.

By continuity, and step [a.2] of the algorithm, it is easy to show that (t = min(57,y).
!/EVNow suppose that t : min (coV). Since i E coV, we have by Lemmas 5.10 and 5.12 that

(ig) < [l-ill .  (5.25)

-7 S
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Consequently, I1I11 is larger than 11min (co {i, 9}) 11. Let c > 0 be the difference.

f 111- IIrin(co {i,g}) II > 0 (5.26)

Now the function min (co {., .}) X x X -* X is a continuous function. Hence there is a

integer K such for all k > K,

Ilmin (co {x.,, })II- y. < 11min(co {t,})Ij (5.27)

This implies that for all k > K

I1I1i > Ilmin(co{ x., y..}) II + (5.28)

which contradicts that the sequence {111xjj} is nonincreasing. Therefore t = min (coV).

Finally, it is an easy fact to show that if {zk} is a sequence in a compact, convex set,
g, with the norm satisfying IIzk+1i :< jjzAjl for all integers k, and there is a subsequence

{zn} converging to min (!), then in fact, the sequence itself is convergent, with limit of

course being min (). Hence the sequence we generate, {xi}, does indeed converge to the

minimum point.

In the next section, we consider the problem of finding a matrix D E D, such that all

of the eigenvalues of UDU - VI*DV are positive. Recall from Theorem 5.5, this is

equivalent to finding a "descent direction" for the function & (eDMe- D). This problem .

can be formulated naturally into a "minimum point in convex hull" formulation as we have

covered here. We also show that finding a point Y, E V that minimizes the inner product

(x, y) can be cast as a hermitian eigenvalue problem.
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6 Upper bound and the structured singular value .4-

6.1 Finding Descent Directions for the Upper bound

6.1.1 Defining a Generalized Gradient Set

Our problem of finding a D E V such that all the eigenvalues of U*DU - V*DV are

positive can be attacked using the convexity results from the previous section. The results

are quite nice, and computationally tractable. The motivation comes from [Doy], though

this section generalizes the results there.

We consider square matrices, C"'", and a compatible block structure A, with integers

,r, i,..., mf defining the dimensions of the blocks, as outlined in section 3.1.

Define X to be the following set of block diagonal, hermitian matrices:

X:= { diag [Z,...,Z8, z,...,zf A]: Z i*=Z E C"',zj E R} (6.1)

This is a real inner product space (of dimension E! r? + f - 1) with inner product

defined by S

P,T E X (P,T) := tr (PT) (6.2)

which, in terms of the blocks that make up P and L is just

(P, T) = tr (PiT) + pjtj (6.3)
ij=l

Remark: When there are only full blocks, s = 0, then X is the set of (f - 1) x (f - 1),

diagonal, real matrices, with the obvious inner product. In those instances, we will

identify X with R 1 -'

Recall the definition for V in (5.5). Let D E D be given. Then D looks like

D = diag [D,,...,D,,dIn,...,d_1I,,u 1,Om,] (6.4)

where Di = D! E C"'"' and di E R. Associate to this D E E, ab DE X by setting

b6 = diag [D1,...,D,, dl,...,df-1] (6.5)

Note the natural one to one correspondence between the elements of V and X.

Y
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Now, let M E Cnxf be given. If the maximum singular value of M, a, has multiplicity

equal to r, then M is

M = &UV* + U2E2V (6.6)

where U,V E C"", U*U = V'V = I, U2, V2 E CnX(n- r), UU 2 = VV 2 = I(n.r), and
22 E R(n - r)X(n - r) is diagonal, positive semidefinite, and none of its diagonal entries are

equal to &.

Recall that we want to find a D E V such that all the eigenvalues of U*DU - V*DV are

positive, or in other words, A.In > 0. Using Theorem 5.5, for such D, then with t < 0,
sufficiently small in magnitude,

a (eDtMe-Dt) ed < & nfidn (6.7)

and hence computation of the inf a (eDMe-) depends on finding these D.
D iD

For notational purposes, partition U and V compatibly with A as

A, B

A= B. (6.8)El F1

L, .EfJ L.FfJ

where Ai, A E C riXr, EiF, E C m ixr.

With this notation

a f-I

U*DU - V*DV = (A.D 1A, - B-DiB,) + E di (E;Ei - F*Fj) (6.9)

Therefore, since this matrix is hermitian, Am1 a (U'DU - V*DV) is just

ra

Ain = min 7* (A!DiAi - Bi*D i) + j d, (E;E1 - F*F (6.10)
VIEC r i _ "7

Exchanging the order of multiplication, and taking traces yields the equivalent form
7 g.

nErAma= mnu Itr[Di(Airn*lA: -Birr*B;)]+ Z d3 tl" (E3 E1 -. ;j) (6.11) -

II' I i= =
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This can be rewritten using inner products as

Ain = min (fDP7) (6.12)
17ECr I

11,711=1
where P" E X is defined by

P ill = A , ?7?A !- Bipj*B ! (6.13)

Let VM C X be the set of all such P7. That is
VM diag [p,...., . : as in (6.13),p'7e C.,II..I = 1}. (6.14)

Recall that when r > 2, the matrices U and V (which in turn define A, B, E and F above)
are not unique. It is easy to verify that the set VM does not depend on the particular

choice.

Then, for a given D E V (and corresponding b E X) we have %

Ai (UDU - V*DV) = min (, P). (6.15) ,
PEVM

Hence, it is the set VM that determines whether or not there is a D that gives Amji > 0.

The next theorem follows directly from equation (6.12) and Theorem 5.13.

Theorem 6.1 There exists a D E V such that Ai. (U*DU - V*DV) > 0 if and only if

0 V co(V ).

If 0 E co (VM) then for every D E V, Ani,,, 0 and An,, > 0. Hence to first order, the 0
maximum singular value either increases or stays the same (we are at a stationary point).

By convexity of , (eDMe-D), we see that we are at a global minimum. To summarize:

Theore-m 6.2 (M) = & (eDMe - D) if and only if 0 E co(VM).DEV
?-.

On occasion, we will abuse the notation VM adopted above. When the matrix in question,

in this case M, is clear from the context, we will drop the subscript and just write V.

Finally, we address the problem of computing the point of minimum norm in the convex

hull of VM. As mentioned in section 5.4, for each D E X, we need to be able to find a

PL) E VM that achieves
(D,Pb) min (DP). (6.16)

PEVM
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This is quite simple. Let b E X be given, and let its components be Di for i = 1,... , s

and di for j =1,... ,f - 1. Then

min (D,P) = min 77 (A!DiA, - B*DiB,) + d EjE -(El (6.17),

PEVM ECr [=
11111=1

Obviously, the numerical value of this is just the minimum eigenvalue of the hermitian

matrix W. Let i7. E Cr be any unit length eigenvector associated with this eigenvalue,

then

arg min(D,P) = diag P,PI ," ,P'W 1] E VM (6.18)
PEVM EV 61)".

where the P's and p's are defined as .1

P il := A i i7 .?1,*A ! - Bi, 77 ,*B (6.19)
71 (E. - F;'lj) 7lw. £

for each i and j.

Using this formula, and the algorithm in [Hau], we can find the minimum point in the

convex hull of VM as desired. "

6.1.2 A Property of V when M is real

If the matrix M is real, then the minimum point in the convex hull of V is real. We will

prove this, and then see the implication it has on computing inf & (eDMe-D). Roughly

speaking, each block of the optimal D E V can be chosen to be real, symmetric.

Theorem 6.3 If M is real, then for any block structure A, the minimum point in the

convex hull of VM is real.

Proof: Since M is real, both U and V in the SVD of M may be taken as real. Now

recall the algorithm to find min (coVM) as described in the last chapter. We can

pick x, to be any element of coVM. If we choose an arbitrary real unit vector 771,
then our initial point x, is real. Obviously then, the point y, may be chosen real

too. Simple induction gives that with this choice of x1, the entire sequence {xi} is

real. It converges to the minimum point, which therefore must be real. -

This leads to the next theorem.

0:
,., .
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Theorem 6.4 Let VR be the set of real, symmetric members of VD. If M is real, and the

infimum

inf (e IMe-DR (6.20)

is achieved, then in fact

infa (eiMe-D)= inf a (eDRMe-DR) (6.21)
DEV D(6E.21

We make a conjecture that this is true even when the infimums are not achieved, but the
details are not worked out here.

Conjecture 6.5 Let DR be the set of real, symmetric members of V. If M is real, then

inf a (eDMe - D) -- inf a (eDRMe-DR) (6.22)DED DREVI

6.2 When = -

The results of this section relate the upper bound to p.

As usual, let A be a given structure, and let M be a given complex matrix. In the last

section we showed that 5r(M) = inf & (eDMe- D) if and only if 0 E co(V M). A natural

question is: "When does &(M) = IL&(M) ?". The answer, which will link the upper bound

and p together, is the subject of the next theorem. Again, the set V plays a crucial role.

Theorem 6.6 &(M) = tau(M) if and only if 0 E VM.

Remark: This is exactly the result obtained in (Doy]. [Doy] however only considers 0

structures with full blocks (s = 0). This section generalizes that result to structures

with repeated scalar blocks as well.
..

Proof: For the proof, we follow the style of [Doy], and prove the equivalence of four

statements: S

1. 0EVM N

2. There exists 77 E C', 1177I1 = 1 and Q E Q such that QU77 = V7

3. There exists E C n, fI = I and Q E Q such that QM =r

4. &(M) = pa(M) %

rN
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1 -- 2: From the definition of V, (6.14), 0 E VM implies that for some y7 E Cr, 117711 1

A-yy*Ai* - Biyy*Bi" = 0 i < s

y 0(Ej*Ei-Fi*F)y=0 j f-1 (6.23)

Obviously, for i < s, there is a phase ej oi such that eiAi7 = Bi. For j < f -

1, IIE377II = jfFjiqj, so there exists a unitary matrix Q, such that QE q = F . The

only thing left is the last full block. Since IUyI[ = IIV77I we must have IIEf1I =

IIFi771. This gives a unitary matrix QI with QfEfry = Ffq. Arranging the phases

and Q's in a block diagonal fashion gives statement 2.

2 -1 : This follows along the lines of 1 -- 2.

2 -3: The matrix M has a SVD of M = &UV* + U2E 2V2 '. Hence QM(V1 ) QUr =

FVi. Defining = V gives statement 3.

3 2: A SVD of QM is

QM = '(QU)V* + (QU 2 )E2V2  (6.24)

If QM = &, then must lie in the subspace spanned by the right singular vectors

associated with &. Hence there is a vector q, satisfying = Vq. Obviously 11771 = 1

and

QU77 = QUV*' =QM = = V77. (6.25)
0"

3 -4: QM = implies that pa (M) = m axp (QM) > p(QM) > a(M). However & is

always an upper bound for i hence we must have equality.

4 -- 3: This is obvious by Theorem 4.5. (,u(M) = maxp(QM)) g

Theorem 6.6 is extremely important in determining when the upper bound gives p. The
I

idea is to find D. E V such that 0 E co(VDoM-Do). This can in principle be done using ,

a steepest descent method, and the facts about V in section 6.1. Then, we know that

,a (M) = f (eDoMe -D °)_ inf .(eDjeD) - " (eD°MeDO). (6.26) "7.

If, in fact 0 E VetoM-Do, then by Theorem 6.6 we must have

et (e-Me'.-Do) =a(e Do Me -Do) (6.27) 4

so that

=(M) inf a (eDMe-D). (6.28)
DED

.- b
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Therefore, if the block structure A imparts the property on V such that 0 E co (V) implies

0 E V, then we will always have MA (M) = inf a (eDMe-D).
DEV

A technical point we have not addressed is when the "inf" is not achieved. In that case the

above reasoning cannot be used directly, since we never actually get 0 E co (V). However,

everything still works (this proof also rigorizes the above arguments):

Theorem 6.7 If the block structure A has the property that 0 E co(V) always implies

0E V, then p, (M) = inf 4 (eDMe-D).
DEV

Proof: Let 8 = inf& (eDMe-D). Let Dk be a sequence in V such that a (eDkMe- D )

converges to 3 as k --+ oo. Denote Wk = e DMe- Dk. Since the sequence Wk is

bounded, it has a convergent subsequence with limit W. Obviously, by continuity of

a and p, &(W) = and pt(M) = p(W). We claim that 0 E co(Vw). Suppose not,

then thereexist D E D and c > 0 such that & (e DWe-D) = /3- f. Choose k so that

IWk -. Wi < - f , where K (.) denotes condition number. Then
2 r.(e5)- 

W- 
Ilie (wk - W) e- l (6.29)

which yields P
Ile Wke- 11 < - (6.30)

This contradicts that /3 was the infimum, hence indeed 0 E co(Vw). By hypothesis,

this means 0 E Vw so by Theorem 6.6, u(W) = &(W). Recalling continuity, we get

y&(M) = 3as desired.0 .

In the section to follow, we will determine some structures for which the hypothesis of

Theorem 6.7 always holds. Therefore, for such structures, the upper bound will always

equal jz.

To conclude this section, consider the minimization over the D's. Typically, since we are

minimizing the maximum singular value, the top singular values tend to coalesce, so that

at the minimum, the multiplicity of a is greater than or equal to 2. This is typical of

any "min max" problem. Suppose though, that at the minimum, & (M) was distinct.

Obviously, since we are at a minimum, we must have 0 E co (V). But if the multiplicity

of a is only 1, then V is a single point, and hence V = {0}. This reasoning gives:

Corollary 6.8 If, at the minimum of & (elMe-D), the maximum singular value has mul-

tiplicity of 1, then p (M) = nmin a (eD Me -D ) .~DE'D
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7 Properties of the set VM
MM

With the machinery presented in the last section, we can now explore the relationship 1'

between the upper bound an p for a variety of block structures.

7.1 Block structures with no repeated scalar blocks

We begin with block structures having no repeated scalar blocks, that is, when s = 0. All
material here is taken from [Doy] and [MorD] and is included for completeness.

7.1.1 2 full blocks

The situation with two full blocks is relatively simple. Referring back to (6.13) and (6.14),

we see that V will always have the form

V = {q* (E*E - F*F) 1 : 7 E C, 11911 = 1} (7.1)

for some given r > 0 and E, F E CmXr . Since E*E - F*F is hermitian, V is just a closed

interval in the real line. Obviously, this is always convex, so if 0 E co (V), we in fact have

0 E V. Hence by theorem 6.7 we have:

Theorem 7.1 If A consists of two full blocks (s = 0, f = 2), then

A(M) = (eDMe-). (7.2)

Remark: The two block case was first solved in 1959 by Redheffer [Red]. His approach

is quite different. Interestingly, it uses a form of Schauder's fixed point theorem,

[DunS] and hence does not boil down to just simple linear algebra. Similarly, the

method of proof here uses the analyticity of eigenvalues of an analytic matrix, which

is also a nontrivial fact. It would be quite nice if simpler proofs existed, but none

are known.

Also, this is a fairly simple thing to compute. Recall that for two full blocks, there is "

only one free parameter in the set D, consequently, the computation is a one dimen-

sional search on a convex function. The only drawback is that the cost evaluation is

a & evaluation, which while not exceedingly difficult, is nonetheless time consuming.

Note that a search need not involve gradient calculations, hence the code can be

quite simple.

- S ".. *1* -. . " . 75
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7.1.2 4 full blocks

Consider the case when A consists of four 1 x 1 blocks, so s = 0, f = 4, and mi = 1 for

each j. Let a, b, and c be positive real numbers, d and f be complex numbers, and ;b1 and

02 be real angles. Define matrices U, V E C4x 2 by

Frc t i=C c -jc (7.3)
d f ' f  dV d

For the time being, suppose that these are both unitary matrices, so that UU = VV =
12. Later we will actually assign the correct values, but at the moment we just assume

this is already done. Then define M E C 4x4 by

M := UV" (7.4)

With the assumptions of unitariness on U and V, (7.4) is a singular value decompostion

of M. M has two singular values at 1, and two singular values at 0. With respect to

the block structure A that we have defined, what properties does the set VM have? In

particular:

0 is 0 E co(VM)? If so, then inf a (enMe -  = 1, otherwise, it is less than 1.DEV

* is 0 E VM? If so, then 1A (M) = a (M) = 1, otherwise it is less than 1.

Since the multiplicity of the maximum singular value is 2, we can parametrize all unit

vectors in C 2 , and get a parametric representation of VM. It is easy to see that any vector

77 E C2, with II'ili = 1 is of the form

[e'Cos 0

for some real €1, € , and 0. As it turns out, VM depends only on the difference 1 - 012,

which we will denote as €.

Simply plugging in for the definition of VM from section 6.1.1, we get

2i :(Cos2 _Sin2)j
VM sin0 cos0 cos€ ER 3 : ,0 ER CR 3  (7.5)

4c 2 sin 0 cos 0 sin 0 I
It is apparent that 0 € VM. That would require (from the first coordinate in (7.5)) that

0 = 42n+ -r, for some integer n. The second and third coordinates being zero would then

require both cos ' = 0 and sin 4 = 0, which is impossible. Hence 0 VM, and ja (M) < 1.
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On the other hand, setting 0 = 0, and then 0 =, gives that both [a2 0 0 ]T and [-a 2 0 0 ]T

are elements of VM. Consequently, 0 E co (VM). Therefore I

inf& &(eDMe - D) = (M)DED -

In order to complete the counterexample, we must choose the free variables so that U and

V in (7.4) are unitary, as we said we could. In fact here, we will choose them so that VM

is the boundary of a ball in R3 , centered at the origin. The radius happens to be

This particular choice of parameters was obtained via alot of algebra.

Set -Y=3+v and vr=V -I and define

a - ' b- 1 , 1

7 -/ ,rl-

ir7P 2 0 2 = 7r

Some algebra later, we conclude A , V M is the set of all x E R 3, such that I1xII =-2

Obviously, 0 V VM, but 0 E cOVM. Extensive searching over the set Q in the lower bound M

formula (recall that while the lower bound is always p, unfortunately, it is not a concave

function, so gradient methods yield only local maxima) has revealed that for M defined

above, p (M) is approximately 0.874.

Therefore, for the 4 full block problem, as opposed to the 2 full block problem, in general,

y (M) # inf a (eDMe-D). Since the full blocks in this counterexample are 1 x 1, they
DEV

may be viewed as repeated scalar blocks as well. Therefore this counterexample proves

that for every block structure A satisfying s + f > 4, in general, we will have

,(M)# inf (eDMe-D).DED

7.1.3 3 Full Blocks

In view of the 2 previous sections, the only case with s = 0 that we don't know about is

3 full blocks. In this section, we will prove that indeed, V is always convex, and hence for

every matrix M, the infimum upper bound is equal to t. Recall that if A consists of 3 "

full blocks (s=0, f=3), then V is of the form -0

=f { 7 ]E CT, 11,711 = 1 CR 2 (7.6)
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for some integer r, and hermitian matrices H and 112 E C"'T. Obviously, if r = 1, then

the set V is a single point, so it is convex. The next 3 lemmas will show thaL for any

positive r, this is also convex.

We begin with some notation from [Doy]. For any positive integer r, we define the sets

Pr := {x E C' : I114 = 1} and Sr := {v E R"+: jIvl = 1}. If H1,H 2,... ,Hq are hermi-

tian matrices in C"XT, we define a function fH: P* -+ Rq by

ff / (77) E : (7.7)

17 *Hq2?

for each 'q E P'.

Lemma 7.2 Let q be a positive integer. Let aj, ci E R, and b E C for i = 1,... ,q. For

each i, define a hermitian 2 x 2 matrix Hi by

Then there exists a vector d E R q and a matrix V E R q×X such that

f, (P2) = {d + Vu: u E S2}.

where fH is defined in (7.7).

Remark: In other words, the image of P 2 by fH is the image of an affine linear map on

the unit disk in R3 .

Proof: First, we parametrize the unit ball in C2 as S

e- w cos 0 ]
for some real w, ik, and 0. As it turns out, only on the difference W - f is important,

and we denote this as q.
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Then, for any one of the particular Hi, and for any 77 E C, with 1I1I1 1 1 we have

[ b e3 Cos
77*H7 le-cosoe-j~in1[ b c ][ eivsinO 0

- a cos29 + csin29 + 2 [Re(b) cos 0 + Im(b) sin 4] cos 0sin 0

- ' + ' cos20 + 2 [Re(b) cos 0 + Im(b) sin ¢] cos 0 sin O (7.8)

a~ + [- Re(b) Im(b)] [cos 290
= 2 cos 0 cos 9 sin 92 sin € cos $sin9

Note that the vector 
2

[2 coscos0sin]
2 sin 4cos sin9

is a parametrization of S2 . Hence setting di := C. and the i'th row of V, vi, to

v, 24-2[ c Re(b,) Im(b,)]

proves the lemma.

Lemma 7.3 Let d E R2 and V E R2X3. Then the set 0 v {d+ Vu: u E S2} is

convex.

Proof: Let u1 ,u 2 E S' and let A E [0, 1]. Obviously

A ( + Vu,) +(1 -A) (j+ VU2 ) Jd+ V(Au 1 ±+(1 -A)U 2 ).

Now IIAu, + (1 - A)u2 11 < 1. If it is equal to 1, we are done. Otherwise, we can add

to it a vector w in the null space of V (note because of the dimensions, V always has
a nontrivial nullspace) so that u3 := Au1 + (1 - A)u2 + w E S2 . Then N,

A (d+Vu) + (I -A)(d+ Vu 2 ) =j+ VU3 E Gj-

Hence, for q = 2 and r = 2, the set f (PR) E Rt is convex. For a block structure with
s = 0, f = 3, the set V is always of the form f (P*) E R2 (ie. q = 2). Recall though, that K

in our application, r is the multiplicity of the maximum singular value. Concievably, this
can be anything, hence we need to generalize the above reasoning for r > 2. This is easy.

111111 ~~~~~~~~~~~ ~- )QS11 11j~f ' 11)1 ; iLI'
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Lemma 7.4 Let r be any positive integer. Let H1 , H2 E 0 rX be hermitian matrices.

Then the setII = (7.9)

5 is convex.

Proof: Let 771,,q2 be unit vectors in Cr and let A E [0, 1]. With fH defined in (7.9), we S

need to find a 173 E P" such that

ft ('13) = AfH (i71) + (I- A)fH (112)

Without loss of generality, suppose 77i # 712. Choose orthogonal vectors x, y E Pr

that span the same two-dimensional subspace as that spanned by '71 and 772. Define

two hermitian matrices fti and/f/2 E C2x2 by

f~~i "- X: ] H i [X y].

Using these two matrices, and the definition of f in (7.7), we can naturally define

a function ff#: P 2 -- R'. From Lemma 7.3, we know that the set fft (p 2) is convex.

Since x and y are orthogonal, the matrix [xy] E C ,12 is unitary, and there areS vectors 4, (2 E P2 such that 7i = [xy] ¢i for each i = 1,2. Therefore, for each i,
fH (7i) = fj# ((j). Now by convexity of ffc (p 2), there is a (3 E P 2 such that

Af4 ((1) + (1 - A)f 4 ((2) = ft (43)

Let 713 E Pr be defined byq73 := [xy] (a Note that fH (73) = fj, (43). Therefore,

AfH (n7) + (1 - A)f ('72) = fH (773), so that fi (Pr) is indeed convex as claimed.0

7.1.4 Summary for block structures with s = 0

The last three sections have shown the well known results for block structures with only
full blocks. These results were alluded to in the top row of the table from section 3.1. As
we noted in section 7.1.2, the counterexample for 4 full blocks is also a counterexample for

other block structures, since the full blocks in the example were 1 x 1 and could be viewed

a repeated scalar blocks as well.

It is not know what the worst ratio of p over the upper bound can be. The 4 block

counterexample in this section has a ratio of approximately .874. Extensive computational

L experience has failed to reveal another example which is worse, even for much higher

number of blocks. There has not yet been a physically motivated example where the ratio

was more than .98.

viWC .,.t •-VC'
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The situation when there are also repeated scalar blocks, s 0 0, has not been been studied

as extensively. One of these structures is the topic of the next section. "

7.2 Block structures with s : 0

As we saw in the last section, when s = 0 and f 3 (3 or less full blocks), the set VM is

itself convex. Therefore for that block structure, JA (M) = inf a (eDMe-D). In addition,
DED

there also exist 4 block examples where 0 E co (V) but 0 V. Of course, by the previous

results, 1 # inf a in those instances.
DEV

Until now, the case of repeated scalar (s # 0) blocks has not been investigated. In section

6.1.1, we defined the correct Vj! set to obtain descent directions for & (eDMe- D) when

repeated scalar blocks are part of the block structure. Then in section 6.2, we showed

that 0 E VM if and only if p (M) = & (M), a result previously known for the case of all

full blocks. In this section, we continue with structures having repeated scalar blocks, in

particular, we consider a block structure of one repeated scalar block, and one full block.

Recall the definition of VM, equation (6.14). With this structure, the set VM will always

be of the form

V = {Aq,*A* - B,9r,*B*: 7 E Cr, [[7I = I } (7.10) r.

for some given r > 0 and A, B E C r xr. It is easy to see that in general, V is not convex.

For instance, take A = I and B = 0. Then V is all norm 1 dyads, but in general, a convex

combination of norm 1 dyads is not a norm 1 dyad, so V is not convex. However the

following (which is all we need) is always true.

Theorem 7.5 Let V be defined as in (7.10). If 0 E co(V), then 0 E V.

Proof: Suppose that 0 E co (V). Then, for some integer p, there exist nonnegative

a,, i= 1,2,... ,p with -ai = 1 and vectors m7, i 1,2,... ,p with 1177 = 1

such that p

Z a, (Ahjh7,*A* - B7T7li7*B*) = 0 (7.11)
which is rewritten as

A (Z inii ) A- = B (Pii~i) B* (7.12)

Since the ai are nonnegative, and not all 0, the dyad summation in (7.12) is a positive

semidefinite matrix that is not zero. Let Xi be its hermitian, positive semidefinite

WrI
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square root. Therefore

AXiXiA* = BXIX B* (7.13)

Hence, there is a unitary matrix V such that

AX 4 = BX V (7.14)

Let v be an eigenvector of V (with eigenvalue eje ) such that Xv 0 0, and define

u :=Xiv. Note that u is nonzero. This gives

Au = eaeBu (7.15)

which implies that 0 E .

What implication does this have? Obviously for this structure, p (M) inf a (DMD-').

Precisely, let M be a given matrix, partitioned as

r At11 Ml12 ]1
M - M21 M 22

and suppose the dimensions are Mil E C" ×' and M22 E C " 2X1 . Defi4e A asan = diag [AlI, A 1 , a C, A CM XM2. e a de a

Th (M)= inf D M1 D-1 DM 12 1
DEC"..~ M 21 D1  M22D invertible

DGC*
x
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8 Linear Fractional Transformations

8.1 Introduction

Using only the definition of u, we can prove some rather simple theorems about a class of

general linear feedback loops called Linear Fractional Transformations. To introduce .

these, consider a complex matrix M partitioned as

Mil M A 12 ] (81)M=[M21 M22

and suppose there is a defined block structure A which is compatible in size with M11 .
For A E A, consider the following loop equations,

e = M21 w + M22d
z = M11w + M12d (8.2)
w = Az

This set of equations (8.2) is called well posed if for any vector d, there exist unique

vectors w, z, and e satisfying the loop equations. It is easy to see that the set of equations

is well posed if and only if the inverse of I - M11A exists. If not, then depending on d

and M, there is either no solution to the loop equations, or there are an infinite number

of solutions. When the inverse does indeed exist, we have e = F,, (M, A)d where

F,, (M, A) = M22 + M 21A(I - M 1 1A) 1 lM12  (8.3)

F,, (M, A) is called a Linear Fractional Transformation on M by A, and in a feedback

diagram appears as:

Figure 8.1 Linear Fractional Transformation

From a system point of view, we interpret vector d as the "disturbance", and e is the

error", whereas vectors z and w are internal variables. M 22 is the nominal map between -V

the disturbance and error, and A represents unknown quantities, called perturbations, '

which affect the map in a known way-namely through M 12 , M 21 , A 1 1, and the formula F,.

The subscript u on F,, pertains to the "upper" loop of M is closed by A. An analogous
formula describes F (M, A), which is the resulting matrix obtained by closing the "lower"

loop of M (assuming the dimensions are ok and the implied inverse exists).

''-
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The constant matrix problem that we would like to solve is:

* determine whether the LFT is well posed for all A in some prescribed subset Ql C A

and,

9 if so, then determine how "large" F. (M, A) can get for A in fl.

The next section has three simple theorems which answer this problem.

8.2 Well Posedness and Performance for Constant LFT's

One appealing use of i is to determine the well posedness of a linear fractional transforma-

tion on a structured A, and to determine how "big" the linear fractional transformation

can get. As we will see, p answers these questions. Of course, using the results here will

require that we can compute M.

Consider a complex matrix M partitioned as

M= M11 M1 2 1
I M A 21 Al22 ] 84

and suppose there are two defined block structures A1 and A 2 which are compatible in

size with M11 and M 22 respectively. Define a third structure A as

0=[A :Al E111A2 EA 2 j (8.5)

Now we have three structures with which we may compute p with respect to. The notation

we will use to keep track of this is as follows: pl (.) is with respect to Al, 12 (.) is with

respect to A2 , : 41,2 (') is with respect to A. In view of this, Al (Ml1 1 ), 12 (M 22 ) and

/1,2 (M) all make sense, though for instance, p (M) does not.

The first theorem addresses the well posedness of the LFT F,, (M, A1 ), and is nothing

more than a restatement of the definition of p.

Theorem 8.1 Let # > 0. The LFT is well posed for all Ai E 1BA if and only if

Ai (M11 ) <i3.

Note that the < and < signs can be exchanged and the theorem is still true. An imprecise

but important notion to get from this is that the minimum amount of structured feedback

necessary to cause a loop to be ill posed is inversely proportional to u of the open loop.

A
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As the "perturbation" A1 deviates from zero, the matrix relating d to e deviates from M 22.

Using the quantity P1,2 (M), we can bookkeep what happens to A2 (F (M, A,)) as follows:

Theorem 8.2 (Robust Performance:constant) Let /3> 0. Then Y 1,2 (M) </3 if and

only if p, (Ml 1 ) < 0, and for all Ai E BA 1 , P2 (F. (M, Ai)) </3.

Proof:

Let Ai E Ai be given, with a (Ai) <, and define A = diag [A1 ,A 2]. Obviously

A E . Now
I-M 11 A1  -M 12A2 ]

det (I - MA) = det -M 21 A1  I - M 22A2 j (8.6)

By hypothesis I - M11A1 is invertible, hence det (I - MA) becomes

det (I - M1 1A 1 ) det (I - M 2 2 A 2 - M 2 1 AI (I - M 1 1A 1)-' M1 2 A 2)

Collecting the A2 terms leaves

det (I- MA) = det (I- M11A1) det (I- F,, (M, AI)A 2 )

We also havep 2 (F,, (M, A,)) < f, so, since 5'(A 2 ) < -, the quantity I - F. (M, A,)A2

must be nonsingular. Therefore I - MA is nonsingular, 80 P1,2 (M) </3.

- Basically, you just reverse the argument above, but we include this for complete-

ness. Again let Al E A and A2 E A2 be given, with E (Ai) < and define

A = diag [Al, A2 1. By hypothesis, we know that I - MA is nonsingular. It is easy

to verify from the definition of y that (always)

A1,2 (M) > max {PI (M 1 ) , Y2 (M22 )}

so we also have 1, (Mil) < /3, which gives that I - M11A1 is nonsingular too.

Therefore

det (I - M11A 1) det (I - F,, (M, A1)A2 ) = det (I - MA) #0 ,.

Obviously, I - F,, (M, AI )A2 is nonsingular.0..

An identical proof switches the < and < signs:

Theorem 8.3 Let l > 0. Then P1,2 (M) 3 / if and only if p (A11 ) _ 3, and for all

Al E A1 , with r(A) < A p2 (F.(M, Al)) </3.

7.'
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Roughly speaking, we have a test that determines if for all & (A 1 ) < , the quantity

JL (F.(M, A,)) stays bounded by 03. Since both p(.) and r(.) are special cases of p,

by the appropriate choice of the set A 2, either p (F, (M, A,)) or a (F (M, A1 )) could be
"watched". Of course for different choices of A 2, the theorem gives information about
IA2 (f. (M, A,))-

Note that in this test, the bound we get on the performance is dependent on the bound we

set on the perturbation, namely they axe reciprocals. For other values, we must scale M I..

and recompute. Specifically, for a > 0, define M, as

Mi M 2 (8.7)
Ma = [aM 21 aM 22

Some simple facts about Ma:

e If a = 0 then /11,2 (Ma) -- (M 11 )

* For any A1 E A1 , Fu (M., A,) = aF. (M, A,) (as long as the inverse exists)

* max {AI (M 11 ) , aCY2 (M 2 2 )} <_ 91,2 (Ma) _< max {1, a} /1,2 (M) "S

6 /11,2 (Ma) is a continuous, nondecreasing function of a

Let -y > it, (Ml11) be given, and define

a,, = max {a /1,2 (Ma) = 7} (8.8)
a>O

These lead to the following variant of Theorems 8.2 and 8.3;

Theorem 8.4 (Worst Case:constant) Let -y > 1 (Mil) be given, and a, be computed

from (8.8). Then
sup /1 2 (F, (M, A,)) = (8.9)

F~

Remark: The basic idea of the theorem is this: find the largest a such that for all

Al E 1BA, we still get /2 (F (M,A,)) < .. By the 2nd fact above, this is the

same as: find the largest a such that for all a (A1 ) < Y 2 (Ma) < f. This test

we can do, by applying Theorem 8.2 on Ma, which then gives the result.

RS!'

'S,
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Proof: Since y' > it, (M 11), the left hand side of (8.9) is always well defined. By definition

of a., we know that 111,2 (M,,) = -, and for any e > 0, A1,2 (Mf.,+e) > -1. Applying

Theorem 8.3 with /3 = 7 gives

if Al E Al,6(A,) < - ,then pU2 (F. (M, Al)) <"
"7 a.,

Since F. (M, A , ) is well defined and continuous on A < e have

sup t2 (F,.(M, A 1)) < .

Suppose it is truly less. Then for some c > 0

SUP A2 (F. (M, A,))='
A1 ELBA1  y

which implies that /1,2 (Ma.,+e) < 7 , a contradiction of the definition of ,,.

Corollary 8.5 If 1,2 (M,) is a increasing function of a (not just nondecreasing) then

sup A2 (F,. (M, A,)) =/1,2 (M.)

1 a

Finally, we state a maximum modulus like result for y. The proof uses Theorem 4.5 from

the previous section, along with ideas similar to the ones here.

Theorem 8.6 (Maximum modulus: LFT) Let M be given as in (8.4), along with two

block structures A, and A 2. Suppose that q, (Mil) < 1. Thenr

max A 2 (F.(MAl)) = max A12 (F. (M, Q1)) (8.10)

Remark: In light of this, any u test with at least one repeated scalar block can always be
reduced to a one dimensional search of i tests without that block. A similar result "

to Theorem 8.6 is in [BoyD]. They show for that any H bounded and analytic on

zJ _ 1, the function k(z) := p (H(z)) is subharmonic.

Finally, we note that Theorems 8.1 through 8.4, along with corollary 8.5 and Theorem 8.6

have obvious analogs dealing with the behavior of F (M, A), under structured perturba-

tions. In this section, all of the results were stated and proven for F (M, A). Throughout
this thsis, we will use the result of either type without special mention.
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8.3 Examples of LFT's

U8.3.1 Transfer functions as LFT's

Consider a stable, discrete time, linear system

Xk+1 = AXk + Buk (8.11)

Yk = Cxk +Duk .

with transfer function G(z) = D+ C (zI - A)-' B (n states, and for simplicity, we assume

that this has m inputs and outputs, though everything that follows holds for nonsquare

plants also). The infinity norm of G is defined as

IIGtkl° = sup & (G(z))
zEC
Iz1l

which is equivalent to

lGiit" sup a (D + 6C(I - bA)-'B) (8.12)

Define A, = { I :E6 C}, A 2 = C " ' and

M:=[ A ]B (n+mxn+m) (8.13)

In p notation, we can write (8.12) as

IIGIIO ,= sup p2 (F (M , A1 )) (8.14)
AiE1BAi

because the block structure A 2 implies that P2 () = &('), and A 1 has been defined to
represent the Z-transform variable. Applying theorem 8.2, with 3 = 1, gives

IIGIK. < 1 iff P1,2 (M) < 1. (8.15)

In view of the result in section 7.2, actually IIGIIko < 1 if and only if there exists a

coordinate transformation T E C, x such that

(rTAT-' TB <
LCT- ' D <

Hence, we have an algorithm for generating all stable rational transfer functions that have

1 Ik1, < 1. Simply choose any matrix M so that a (M) < 1 and partition M as shown
above. Then G will be stable, and have norm less than one, and all stable rational G(z),

with IIGII < 1 can be generated in this fashion.

•V
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This result can also be shown using results from dissipative systems, and linear quadratic

optimal control theory (with nondefinite cost functions). In fact, if IIGI100 < 1, then solving

one Riccati equation yields a T E CnXn such that rU

a([ TT TB ND=1CT - ' D =1

The details of this calculation are interesting, and follow straightforwardly from the results

in [Will. We do not include them here because the Riccati solution has the undesirable

property that n of the singular values will be coalesced at a = 1. This seems to limit

the usefulness of the Riccati solution as a viable computational alternative to gradient

searching along the "full" D directions.

In this example, the "perturbation" is the repeated scalar block, and for the 11" 1 norm, it

must correspond to the unit disk. Using theorem 8.2 with P equal to 1, we can only check

if IGlI00 is less than 1. For other values, we must scale G and recompute, using Theorem

8.4. Namely, define a as

{=max :inf (TAT-T =T (8.16)>0 T GaCT - 1 aD ) 1

Then the worst case theorem, Theorem 8.4 (with - = 1) gives

JIGI00 1 (8.17)

8.3.2 Keeping LFT's large

Just as p can be used to determine how big the maximum singular value (or spectral

radius) of an LFT can get, we can also use it to determine if the minimum singular value
will remain bounded away from 0 (and, of course, the minimum eigenvalue too). Of course,

the motivation of the LFT as a "perturbed disturbance to error" is no longer applicable,

but this problem is interesting in its own right. The key to all this is that the inverse of .

an LFT, F (M, A) ,is itself an LFT, on the same A, but with a different known matrix,

MI.

This section will present these types of results. All are obtained from the well known
"matrix inversion lemma", which we review for completeness. We begin with a lemma -,

that is fundamental to the matrix inversion lemma.

Lemma 8.7 Let A, B,C, and D be complex matrices, A E C"' ,B E C"n'",C E
Cmxm, D E CMxn. Suppose that A and C are each invertible. Then A + BCD is

invertible if and only if C + DA-'B is invertible.

V|



53 •

Proof. Taking determinants, we get 0

det (A + BCD) = detA det (I + A-'BCD)
= detA det (I + DA-'BC)
- detA det (C - + DA-'B) det C.0

In order to evaluate how small things actually get, we need the matrix inversion lemma.

Lemma 8.8 Suppose A, B, C, and D are given as in lemma 5.6. If A, C, and A + BCD

are invertible, then

(A + BCD)-' = A- ' - A 'B (C-' + DA-1B)' DA- "

Proof: By lemma 8.7, C - 1 + DA-1B is invertible - the result follows by verification. 0
.

Now, let M be given, partitioned in a 2 x 2 fashion as in (8.4), and let A 2 be a given

structure, compatible with M 2 2. Suppose M11 is square, hence F (M, A) is square too.

Under what conditions is F1 (A, A2 ) invertible for all A2 E A 2, with a (A) < .?

First, we require that it be well defined for all such A2 , so we need JU2 (M 2 2 ) < 3. This 6

guarantees that I + M2 2 A 2 will be invertible. Second, it is obvious that M11 needs to be

invertible, otherwise the LFT is not invertible even for A2 = 0.

Theorem 8.9 Let M be given, with the following assumptions: M11 is square and invert-

ible, and /12 (M 22 ) < fl. Then for all A2 E BA 2 the LFT F (M, A2 ) is invertible if and

only if A 2 (M 2 2 - M 2 1 MTi MI 2) </

Proof: Since M,, is invertible, and A 2 (M2 2 ) < 0, and &(A2 ) < , we can apply Lemma 0

8.7 to determine the invertibility of

M,, + M12A2 (I - M2 2A 2)' M2,.
A B C D

This is invertible if and only if

I - M2 2 A2 + M 21 M'M 2 A2  (8.18)

is invertible. Recall the definition of i. The quantity in (8.18) is invertible for all

A2 E A 2 with &(A 2 ) < - if and only if 02 (M 22 - MI 1MM 2 ) < /.
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Now apply the matrix inversion lemma to get an expression for [F (M, A 2)1 - '. If F (M, A2)

is invertible, then

[FI(M,A 2) = M J'- Mj'M 12 A2 [I - (M22 - M21Mii'M12) A2  M21MTII

If we define a matrix M, as

[l: MT11 -MT11M1 ]

M 21M;I M22-M 21M 1 M 12

then

[F1 (M, A 2 )I - x = F1 (MI, A2 )

Theorem 8.10 Suppose that M11 is invertible, A2 (M2 2 - M 2 1MT11M 12 ) < 3, and 112 (M 22 ) <

3. Then, in view of the discussion, the following equivalences make sense and are true:
1a

rin a [F, (M, A 2)] > max & (E1 (MI, A)) <--'31 21 A 2E B A 2
,.-, 3 1  (MI) <3

where A {diag [A, A2 ] : A E C"x ", A2 E A2 }. (If we had wanted to keep track of the 7

smallest magnitude eigenvalue, as opposed to the smallest singular value, then the top

block of A would instead be a repeated scalar block)

8.4 Upper bound LFT results

Each of the Theorems 8.2 and 8.3 give necessary and sufficient conditions for some per-
formance/robustness characteristic in terms of a it evaluation. Looking back at these

theorems, we see that the it test always looks like "Is t (M) < 3?" (or <). Hence, upper

and lower bounds can be used in the following manner:

" an upper bound gives a sufficient condition for the robustness/performance charac- p-

teristic of the theorem

" a lower bound gives a sufficient condition when the robustness/performance will not .'

be met

Consequently, both are important. The upper bound will yield positive comments like
"We are okay for perturbations up to this size, and maybe alot better", while the lower

-4
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bound yields negative statements such as "There is a perturbation this size that will cause

instability (or sufficient degradation in performance), and it might be worse".

The above comments apply for any upper and lower bound. In this section, we will

concentrate on the additional information that is obtained in using the a (DMD- ') upper

bound. In other words, because of its structure, a (DMD- ') < # in general implies a

great deal more than u (M) </3. One word before proceeding: we drdp the exponential

notation for D's, and revert back to (3.7) for the notation. Recall that the exponential

parametrization was introduced in section 5 to allow simpler derivative formulas, which

are implicit in the definition of VM.

We begin with an obvious result: Trivial upper bound lemma: Let A, and A2 be

two given structures, and define a third, = {diag [A,, A2] : Ai E Ai}. Let M be a given

matrix such that P1,2 (M) makes sense, and suppose there is a function 1Pub (-) that is a

upper bound for A1,2 ('). If Pu.b (M) </3, then

max /42(F (MA1))<,6AiEBAI

Proof: This follows directly from the constant matrix robust performance theorem, S

Theorem 8.2.t0

The following theorem shows what additional information we get if the upper bound,

Pub (), is in fact the & (DMD- 1) upper bound. As before, let AI and A2 be two given

structures, and let & = {diag [Al, A2] : Ai E Ai}. Similarly, let D be the appropriate D

scaling sets for the two structures, and denote b as the obvious diagonal augmentation of

these two sets.

0
Lemma 8.11 (Constant D lemma) Let M be given as in the robust performance

theorem, 8.2. Suppose there is a D E 15 such that

a (bmb-') </

Then there exists a D2 E VE2 such that

max E(D 2F.(M,A,)D') </3
Ai E 7BA,

Remarks: Initially, one might guess that if we replace p by the a (DMD-1 ) upper bound 5

in the robust performance theorem hypothesis, the resulting claim would just have p re-

placed by & (DMD-'). This lemma shows that we get quite abit more: If the a (DMD- 1 )
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upper bound is less than 1, this does not just imply that for all Al E A,, with a (A,) < ;,
the upper bound of F. (M, A,) is less than 1. It implies, instead, that this is indeed so,

but using only a single D2 E V 2 .

Proof: The easiest method of proof is just to track the norms of the various vectors in

the loop equations for the LFT. Let D1 and D2 be the separate parts of the D E -

that achieves a (DM) - ) </3. Obviously, i (M11 ) </3, so for any A1 E A, with

a (A 1 ) _ , the two LFT's below are well posed, and from d to e are the same.

d d e

Figure 8.2 Diagram for Proof of Lemma 8.11

Let d # 0 be any given complex vector of appropriate dimension, and let e, w, and z

be the unique solutions to the loop equations for LFT. By hypothesis, we have

I1zI12 + 11eJ12 < 2 (1wI12 + Id 12) (8.19)

and since a (A,) <

IIW1 114,1 (8.20)
Combining these gives that

IleJ2 < # 2JjdjJ2 .  (8.21)

Equation (8.21) also holds for LFT, since the map from d to e is the same for both

LFTs. This implies that & (D 2F, (M, A1)D2"1) <13 as desired.

An interesting question is "what is the optimal constant scaling that one can apply?" In

particular, suppose It, (M11) < 1. Therefore, for all A1 E A,, with a(A,) < 1, the linear

fractional transformation F,, (M, A1) is defined. Can we compute the value of

inf max & (D 2F,, (M, A1 )D21) (8.22) __

D2EV 2 AiEBA,

and also find a D2 that achieves it? Towards answering this question, we have a simple

lemma:



Lemma 8.12 Let M, A,, A 2 , )T, and V 2 be given as usual. Suppose that the A2

structure has dimension n 2 x n2 . Define an augmented structure A as

: {diag[A,, A]: Ai E A,A E Cn2Xn2} (8.23)

Note that & is not A, augmented with A 2 . It is A , augmented with an unstructured

block the same size as A 2 . Suppose that it (Ml) < 1. Then for a > 0, and D2 E V2,

SaD2M21 aD 2 M22D2 <1 (8.24)

if and only if

max & (D2 F (M, A,)D -) < - (8.25)lai EBAI aX

Proof: Again, this follows directly from the definition of the structure A, and the robust

performance theorem, Theorem 8.2.0 0

This allows easy proof of the General optimal constant scaling theorem:

Theorem 8.13 Let M, A,, A2 , E), V 2, and i be given as in Lemma 8.12. Suppose

that Ii (Mil) < 1. Define 7 by

M11 M 1 2 D' 87= a : Dnf A 2 < 1 (8.26) 

Then

inf max a (D 2F (M,A)D ) (8.27)

Proof: Note that since q (Mil) < 1, the value of -t (in (8.26)) is positive. Next, let r

denote the infimum, that is

r:= inf max a (D2 F (M, AI)D-1) (8.28)
D2EV2 AiBAI

We want to show that r .

Let a <y. Then, from the definition of -y, there is a D 2 ED 2 such that

( M11  5 1
C ADM 21  cD2M22D21  < (.9

r
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Then Lemma 8.12 implies

max &(DF.(M,Ai))D) <-. (8.30)

1
so trivially r < --. This holds for any a < y, in particular for small enough E > 0

1 1"
and a -. Therefore, for e > 0, r < 1, and taking limits gives r < 1

Suppose it is truly less, ie. r < -. Then by the definition of T, (8.28), there is a

b2 EAsuch that max (b 2 F,,(M,A,) b) <-. (8.31)

Then Lemma 8.12 and equation (8.31) imply that

#£ "DM11 "DMD 1  < 1(8.32)(7 D2M21 -/D2M22D21 ) (.2

Using continuity, for small enough b > 0, we would then have

-1 l<1 (8.33)
(b (+ Y)b 2 M 2 1 (6 7 bM 2 2 M1+-M)I2 ' b-1

which violates the definition of 7. Hence 7- as caimed.0

This is an interesting result. Note that the structure which we need to compute p with

respect to does not depend on A2 . If 1A can be computed, then, modulo the necessary

search over the D2 and a this is a useful theorem. Later, in section 10, we will use the

general optimal constant scaling theorem to optimally scale transfer functions using

constant, block structured scalings. This, along with the small gain theorem, will provide

a method of analyzing linear, time invariant, multivariable systems with structured, time

varying and/or cone bounded nonlinear perturbations. 7.
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9 A Class of Uncertain Difference Equations

9.1 Robust stability

In this section, we present some robustness results for a class of uncertain systems. The pre-

sentation centers arouid discrete time systems, as the explanation seems simpler, though

everything done here has a continuous time analog. The required transformation for con-

tinuous time systems is discussed in the appendix.

Suppose M E C(n+m)X(n+m) is given, partitioned as

= M21 M 22

where Mil E Cn M
12 E Cnx',M 2, E CmXn, and M 22 E CmX" . Let A be a m x m

block structure, with corresponding D scaling set denoted by E). Suppose tI& (M2 2 ) < 1.

Then for every A E BA, the linear fractional transformation F (M, A) is a well defined

element of Cnxn . Let xk E C evolve via the (possibly time varying) linear difference

equation

Xk+1 = F (M, Ak)Xk (9.2)

where for each time step k, Ak E BA. Such a system would arise if a parametrically ,

uncertain plant, as described in section 2, had a feedback controller, that stabilized the

nominal system, and we were interested in the stability of the closed loop for all the

possible perturbed plants.

Consider the following three assumptions on the uncertainty Ak. For each k:

(a.1) Ak E A

(a.2) & (Ak) < 1

(a.3) Ak is fixed - ie. it does not vary with k

We want to guarantee the stability of the system described in (9.2), knowing only these

three assumptions.

Since (a.3) implies that the system is time invariant, the stability of the uncertain system

amounts to nothing more than checking the magnitude of the eigenvalues of F (M, A) for

each A E BA and is equivalent to 0

max p (F (M, A)) < 1AEBA

~N
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Recall, from section 3.1, that p(.), the spectral radius, is a special case of ui. Hence this
question can be answered using Theorem 8.2, on M with an augmented structure. The

augmentation is straightforward. Define

I={diag [6I, A]: 6 E C, A E A} (9.3)

For the upper bound, which we will use later, the corresponding D scaling set will be

denoted 5 and is of course

b = {diag[DI, D2 1] : Di E C " ' is invertible, D2 E ED} (9.4)

Theorem 9.1 The uncertain difference equation Xk+ F (M, A)xk is exponentially

stable for each fixed A E BA if and only if

MA (M) < 1, (9.5)

where A is defined in (9.3).

Proor: Follows by direct application of Theorem 8.2. ,

Remember, this is true for constant, but unknown A. If assumption (a.3) above is dis-
carded, then the system is time varying. At each step, the uncertain element may be

different-we only know that at each step k, it lies in the norm bounded, structured set

BA. Obviously, simple spectral radius arguments do not apply. The next lemma gives a
simple sufficient condition for stability. I

Lemma 9.2 If S.

max &(Ft(M,A)) =: < 1 (9.6)
AEBA

then the uncertain, time varying difference equation (9.2) is exponentially stable, as long 16

as Ak satisfies assumptions (a.1) and (a.2) for each time step k.

Proof: Regardless of the time variation of the perturbation, Ak, we get that the norm of

Xk satisfies

IXkll (9.7) ,

which obviously decays to zero exponentially since < I by assumption. ,

As stated, Lemma 9.2 is quite conservative. We can reduce the conservatism by allowing

one state space coordinate change. The proof is simple, and is omitted. S.

I-
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Lemma 9.3 If there exists an invertible T E C,,Xn such that

I max~ & (TF, (M, A)T-') = 6 < 1 (9.8)

then for each k the state Xk, of (9.2) is bounded by

jjxA1 j :5 -<jojj (9.9)

where t(T) denotes the condition number of T.

Remark: The above reasoning is equivalent to finding a single, quadratic Lyapunov func-

tion for the entire set of "A" matrices

{F1 (M, A) : A E BA}.

This equivalence is evident via this lemma.

Lemma 9.4 Let A E CTXn be given. There exists a Lyapunov matrix P E C' Th .

P = P*, P > 0 for xk+ = AXk if and only if there exists an invertible T E Cx"n

such that &(TAT-') < 1.

Proof: P is a Lyapunov matrix if and only if A*PA - P < 0 . This is equivalent
to P- A'PAP- - I < 0 , which is the same as r (P AP-) < 1. S

Consequently, if T is a coordinate transformation that solves (9.8), then P T*T is

a single Lyapunov matrix that works. Conversely, if P is a correct Lyapunov matrix,

then Pf is a single coordinate transformation which solves (9.8).

Conceptually, the existence of a matrix T satisfying condition (9.8) can be cast as a A test.

Again we must augment the A perturbation structure, but this time with a full block,

since we are checking a (.), and we must lug around the coordinate change T. The new

structure ,i is

= {diag[A, A 2]: Al E C , . (9.10)

Now, using the Theorem 8.2, we obviously have

Theorem 9.5 There exists an invertible T E CflIfl such that

max a (TF(M,A)T- ) < 1 (9.11)

if and only if T1

nf 0 M1 (9.12)

T* - 0I .0 ,,
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If we could calculate p,& exactly, the condition (9.12) would in principle be something that

could be checked, although it is unclear how the search over the T's would be done. An

interesting approach we will pursue here is to substitute the & (DMD- ') upper bound for

I, (') and see what the resulting sufficient condition is.

First we need the correct set b for the structure i. If D is the appropriate set of D

scalings for A, then we define b = {diag [dlI,, D2]: d, 0 0, D2 E D}. Substituting the

upper bound in place of a, gives that there is a transformation T such that (9.11) is met

if
f ( dI ,,0 01M [T-1 I [d'0 l0 )

TE1 2L T2 O Irn 0 ImJ[0 D2j

The scalar d, is irrelevent, since it introduces no freedom that the coordinate change T

didn't alieady provide. Absorbing d, into T, we rewrite (9.13) as

T 0D1 (9.14)

Note the effect the transformation T has on the minimization in (9.14). Since T is free

to be any invertible matrix in Cn~xf, the matrix diag [T, D21 is some arbitrary element of

b. Hence although (9.14) is condition (9.11) with a& replaced by its upper bound, the

freedom in choosing the coordinate transformation "alters" the upper bound, so that the

left hand side of (9.14) is just the a (DMD- 1) upper bound for the & structure (not the

, structure that was originally there in (9.11)). In other words, (9.14) is just

inf. & (!)M!f - ) < 1, (9.15),

and this is a sufficient condition for Theorem 9.5 to hold. We write this as a theorem.

Theorem 9.6 If there exists a D Eb such that (DMb-') = /< 1. then the uncertain, P

time varying, linear system

X+1 = F,(M.Ak)Xk , Ak E BA (9.16)

is exponentially stable.

How do all these different conditions fit together?

9.a Theorem 9.1 showed that A (M) < 1 is both necessary and sufficient for robust

stability of (9.2) with constant, but unknown structured perturbations.
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9.b Next, Theorem 9.5 gave a necessary and sufficient condition for the existence of a

single, quadratic Lyapunov function for the entire set of systems.

9.c Unfortunately, the condition in Theorem 9.5 is not really a verifiable condition, so

we substituted a A test with a 6'(DMD- 1) upper bound test. This gives that

inf & (!M ') < 1 is a sufficient condition for robust stability with unknown,

time varying, structured perturbations. 6

Note the similarity between the test in Theorem 9.1, and the test in Theorem 9.6. Both
are associated with the i structure - one involves p and one involves the 5 (bMbl)

upper bound. Yet the conclusions each give are quite different. This sheds a little light on

how fundamentally different the upper bound and A are. .4

This final result described in Theorem 9.6 can also be derived from a different point of
view, utilizing Lemma 8.11 from section 8.4 along with the small gain theorem.

Note that the perturbed system, (9.2), is just the loop shown below.

-M-'I

... , Figure 9.1 Perturbed System, Equation (9.2)

Define the transfer function G (z) = I2 + M21 (Z I - A'11) - M If we can find a D, and
D2 (in the appropriate scaling sets, diag [DI, D2) E 15) such that

DIM11D-1 DIM12D- 1

; then using the Constant D lemma, 8.11, we get

IID2G(z)D2 1 o < 1. (9.17)

' Now for Ak E A, the two loops below are equivalent, even if Ak varies with k, because D2

.4'
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is constant, and hence it commutes with linear time varying operators as well.

Figure 9.2 Equivalent Loops -

Therefore, a trivial application of the small gain theorem along with equation (9.17) gives
that the perturbed loop is stable for all varying 8 (Ak) < 1, as expected, and in agreement

with Theorem 9.6 and 9.c above.

9.2 Robust performance

We have seen how the upper bound plays a role in determining some robustness prop-

erties of a class of uncertain difference equations when the perturbations are structured,

and time varying. In this section, we continue exploring the difference between A and the

upper bound with the added objective of performance. Performance will be character-

ized in terms of the zero initial state 12 gain from disturbance to error. Recall that for

time-invariant systems, this is the same as the II II norm of the transfer function from

disturbance to error.

We begin with a matrix M E C(f+n.+m) x (n+nd+M), partitioned obviously, and relating the

variables via X M

ek M21 M22 M 23  dk (9.18)
Zk M31 M3 2 M33  Wk I

The uncertainty is "feedback" from z to w through a structured A E A, where A is

a prescribed m x m block structure. Consider a uncertain linear system (possibly time -Oe_
varying) driven by a disturbance input dk, with output error ek. e

xk+] =F(M,Ak) (9.19)

e k  .. ..

With respect to this partition, F (M, Ak) is V

M 1 2 ] [ M13  -i 1
Al 2 1 ~ ~ 'AI(I2  AI,33Ak) A 3  l 2  ~

M21 M122 M23

We need two augmented block structures. Define & and & as

:= {diag [1In, A2] b, E C, A 2 E C-dx .} (9.20) .h*
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A fd i A] E AA E Al(9.21)

L?

Suppose that liA (Mw) < 1.

Theorem 9.7 (Robust Performance) For all A E BA, the uncertain system (9.19) is

stable and for zero initial state response, the error e satisfies lieJJ2 < J1d112 if and only if

1 & (M) <1. ,

Proof:

- Let A E BA be given. Since iq (M) < 1, Theorem 8.2 gives S

M& (FI (M, A)) < 1. (9.22)

Stability is apparent, and the 12 performance follows from the example in section

8.3.1.

Essentially, the steps are reversed.

What can be concluded if the upper bound of #zi (M) is less than 1?

Theorem 9.8 Let M be given as in (9.18), along with a block structure A. If there is a

b E such that

= <1

then for all sequences {Ak o with Ak E BA, the time varying, uncertain system

Xk+ = F (M , ,A ) k (9.23)"

e dk I(923

is zero-input, exponentially stable, and if xo = 0, and {dk} E 12, then Ile112 _ i jjdjJ2,

The results we have obtained for time varying perturbations extend to a special class of '

nonlinear perturbations. The appropriate definitions and assumptions are the subject of

the next section.

9.3 Cone bounded nonlinearities

Let N be the set of nonnegative integers, and let 0 be any set.

& !
w5 ', t
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Definition 9.9 A unstructured, memoryless, nonlinear operator, S: N x 0 x Cnd -- C n",

is cone bounded (of size a) if there exists a a > 0 such that for all d E Cnd, o E 0, and

alk E N

IIS (k, o, d)II lldll.

In the definition, the set 0 can represent dependencies of nonlinearity S on other param-

eters.

Unfortunately, the notion of a n x n repeated scalar, cone bounded operator is trickier. The

natural definition would involve a single scalar cone bounded nonlinearity, which we would

then be applied separately to each of the n components of the input vector. Unfortunately,

our framework cannot directly handle this, and we must treat this type of uncertainty as n

independent, cone bounded scalar nonlinearities. So, when we refer to a cone bounded,

repeated scalar block, we in fact mean a block of the form y (k, o) I,,. Note that -Y can be

time varying, and depend on the other parameters which the set 0 represents. The key is I

that all n signals into this block get multiplied by the same scalar parameter, namely -f. -. .'

Finally, a block structured, cone bounded nonlinearity is the obvious block diagonal col-

lection of several of these blocks. With this definition, results similar to the time varying

(but linear) results are possible.

a.
Theorem 9.10 Let M be given as in (9.18), along with a block structure A. Suppose ;1
A :N x 0 x Cn __+ C"d is a block structured, cone bounded nonlinearity, with cone of size

1. If there is a b E D such that & (bMb-') = 1 < 1, then the uncertain system

Xk+1 1 FMil M12 M13  Xk1
ek = M21 M 22 M 23  dk
z, M31 M 3  M33  Wk

Wk = A (kOk,zk) .Z ,)

is zero-input, exponentially stable, and if xo = 0, and {dk}= 0 E 12, then I1e112 < d 1d11l2.

I

';

*9 |.

" .Z
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10 Optimal Constant D scalings for Multivariable

Systems

This section combines two results from previous sections, to yield a method for sub-optimal

and optimal scaling of multivariable transfer functions using constant, diagonal D matrices.

Let G(z) be a given, stable, transfer function, with m inputs, and m outputs, and state

space realization

G(z) = D + C(zI- A) - ' B (10.1)

Suppose a perturbation structure A2 is given, and is compatible with G(z). That is,

A 2 C CX ' . As usual, let A 2 denote the set of diagonal scalings (here, for simplicity, we

revert back to the nonexponential notation for the D's, ie., the set Vg from section (5.1))

that commute with all elements of A 2 .

Optimal constant scaling is the constant D scale that achieves the following infimum

(if it exists, otherwise, a scaling that gets arbitrarily close)

inf sup & (D 2G(z)D21) (10.2)
D2E*D2 ZEC

IzI> 0

Remark: This is useful because any linear perturbation, even a time varying pertur-

bation, with the appropriate block diagonal structure as defined by A 2 , commutes

with these constant D scales. Therefore, for every constant D E 7) and every op-

erator A2 , with the correct block diagonal structure, the following operators are the

same
DA 2D -1 = A2

Therefore, for any operator G, the following systems are equivalent (any solution -

to the loop equations in one system are also solutions to the loop equations of the

other).

G --0--,G D

0,-3

Figure 10.1 Equivalent Loops

Simple application of the small gain theorem, ([Zam] and [DesV]), on the right figure
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gives that if A 2 is a stable operator mapping 12 - 12, and the induced norm of A2,

11A 211, satisfies I 2

iIA~in < IIDGD-'11l

then the loop is stable. Hence, if we can maximize the right hand side, this will

eliminate some of the conservatism in the small gain theorem due to the structure

of the perturbation. This calls for a minimization of the form

inf IIDGD-Ilk,
DE,

An important point to reiterate is that the D's are constant. If they were frequency
varying, then in general they would not commute with time varying A's, and hence

the equivalence of the two figures would be invalid. p
Refering back to section 8.4 we see that, at least conceptually, Theorem 8.13 gives the
value of the infimum. Here we will capitalize on the additional structure that is present

in this specific problem, and use the result for block structures with f = s = 1 which we

obtained in section 7.2 to give a computationally tractable approach.

First, let A E CnXn, B E C' m , C E CmXn, and D E C' x' be a realization of G(z). We
assume G is stable, so p (A) < 1. Recall that by inverting the Z transform variable, we
can rewrite (10.2) as ,:.inf max a (DF,, (M, A1 )D-') 

(10.3)
D 2EV2 Ai 

'2

where

[A B] (10.4) %I: C D ,-

and Ai = {In, b6 E C}.

Direct application of Theorem 8.13 from 8.4 gives,

inf sup j (D 2G(z)D-') 1 (10.5) .
D2ED2Z %

IZI 1'

where - is defined by .9

7y :=sup {a: D2 6V /, A BD 1  (1.6

:>0 :an 2 aD2C aD2DD ) < 1(10.6),,

using the block structure

A {diag[ [, I,] : , C C, AE Cmxm (10.7)
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This, A in (10.7), is precisely the structure we considered in section 7.2, and with respect

to this structure, IA,(M) = inf a (bMb-'). Hence the quantity 7 in (10.6) can be defined
bOl 0

in terms the upper bound, instead of IA. The expression for - below follows immediately

by substituting the infimum for js into (10.6).

a inf i ( DlAD-' DBD2'sup 1 n DCf a D 1 < (10.8)
invertible

We state this as a theorem.

Theorem 10.1 Let G(z) and A 2 be given as in the beginning of this section. Define

7 E R by
D, ~ AD-'DjB-Y sup ta D1ibl 1 -1 ~ 1  2~~ -1 < 1 }.(10.9)a>O D, invertible aD2CD1X aD2DD2 <I.(09

Then 
d.',

D2 sup (D2G(z)D1) 1 (10.10)

IzI>1

How is this computed? For a given a > 0, we can find the infimum using the descent
directions for 6 that were presented in section 5.3. Carrying out a one dimensional search

to find the correct value of -7 completes the calculation.

The sufficient condition is easy, and follows directly from Lemma 8.11.

Lemma 10.2 If there is a diag [DI, D2] E 5, and an a > 0 such that

& DlAD' D1BD 1 )
" aD 2 CDl1  aD 2DD2, < I 4

then

IID2GD-'K 11 16IIDG f II _1 " f;,a .

o •

hi
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11 Frequency domain techniques

The most well known use of a is as a frequency domain tool, specifically, as a generalization

of the singular value tools developed in the late 70's, [DoyS]. Singular values are useful

for one full block of uncertainty, but are generally conservative when the uncertainty has

structure (recall, for one full block, u = a, but for other structures the gap between A and

a may be arbitrarily large). Hence singular value-like frequency plots, using u instead of

a can handle structured unmodeled dynamics, [DoyWS].

This section will present a simple set of modeling assumptions, along with the robust-

ness theorems that subsequently arise. The modeling approach we adopt here is quite

unsophisticated. This will help us avoid more complicated topological issues of modeling

uncertainty, which would take us too far from the spirit of the research. A natural way

to view uncertainty in an individual component is as follows: the only knowledge about

the actual component is that it lies in some predescribed set of possible components (the

use of t almost requires that the prescribed set be defined in terms of a linear fractional

transformation). Work by Vidyasagar and [FooP] has shown that the set representing the

actual component should be path connected in the graph topology. The graph topology is

a topology on the space of proper, rational transfer matrices. It was introduced in [Vid],

and is best characterized in terms of coprime factorizations. We would like to bypass this

issue, since it is not central to the ideas here. Moreover, obtaining necessary conditions

for robust stability is much less understood in this framework. Consequently, we will be

content with the simplified uncertainty modeling presented here. Fortunately, in either

approach, the robustness test (using a I framework) will still involve calculating p on a .

specific nominal, closed loop transfer function.

Apart from the differences in time domains (continuous versus discrete), the results of this

section are entirely equivalent to those from section 9. In effect, we replace the single p

test of Theorems 9.1 and 9.7 with a frequency varying p test on a smaller matrix and cor-

respondingly smaller block structure. This is possible via the maximum modulus result,

Theorem 8.6. In spite of this mathematical equivalence, the results in this section are de-

rived using a Nyquist-based argument, which is consistent with the historical development
"f these robihitn- methods.

We begin with some well known results on the stability of feedback loops.

I-
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11.1 Stability of Feedback Loops

Consider two finite dimensional, linear, time invariant systems described by the equations

i = Aizi + Bju,
yj = Czjx + Djuj

Assume that the number of outputs in system 1 equals the number of inputs to system 2,

and vice versa. Hence D, D2 is a square matrix, and we assume that I + D1 D2 is invertible.

Let Mi(s) denote the transfer function of each system.

Suppose that for each i = 1,2, the pair (A1 , B1 ) is stabilizable, and the pair (Ai, C) is

detectable. Consider the interconnection ul = Y2 + v1; U2 = V2- y shown below. S

+ M"

Figure 11.1 Feedback Interconnection of Two Systems

Then the internal dynamics of the interconnection, which are governed by the matrix

[ A1 - B, (I + D 2D,)-' D2 C1  B, (I + D 2D)-1 C2  1
-B 2 (I + DrD 2)

- ' C1  A2 - B2 (I + DD 2) - D1 C2

are stable if and only if the transfer function from 2 to Y has all of its poles in

the open left half plane (proper, rational, transfer functions with all poles in the open left

half plane will be referred to as stable). This is easy to verify by showing that the internal

dynamics are stabilizable from v, and detectable from y.

Theorem 11.1 If both M1 and M2 are stable, then the interconnection is stable if and

only if (I + Mi(s)M2(s)) - 1 is stable.

Proof: All four of the transfer functions are linear combinations of I, M1 , M2 , and

(I + M 1M 2)', hence, if these separately stable, all 4 of the transfer functions are.

Conversely, (I + Ml(s)M2(s)) - 1 is equal to I - H t2, where H.,,,,2 is the transfer

function from v2 to yi. Hence (I + M1M2 )-i necessarily is stable if the interconnec- %

tion is.

Alternatively, we have the multivariable Nyquist test, which in the case that both systems

are stable, has a particularly simple form.
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Theorem 11.2 Suppose both M, and M 2 are stable. The interconnection is stable if and

only if the Nyquist plot of det (I + MI(jw)M2 (jw)), does not pass through or encircle the

origin, as w varies from -oo -+ w.

11.2 Representing unmodeled dynamics

In this section we describe a simple set of assumptions for modeling components with

unmodeled dynamics. As mentioned earlier, similar, but more sophisticated assumptions

exist, [FooP].

Consider a "two" input, "two" output system G described by the following state space

equations

I= D 1 / 1  (11.1) Y1 C, Dl it) u2
C21 D21 u

where A E Rn", AE R"xnu ,C E R nV xn , ,Di E R y,xnU,. We will use this state

space description to represent an uncertain component. We begin with the following 'Y

assumptions:

* The nominal model for this component is given by the quadruple (A, B 2, C2, D22).

The pair (A, B 2) is stabilizable, and the pair (A, C2) is detectable.

a a(D1 ) -5 1.

The uncertainty in the component will of course be parametrized by a linear fractional

transformation. Let A be any given block structure, with overall dimensions n , x n.1.

With respect to this A, define the following set of state space quadruples

7& (,, 0,C,b) :Aisstable, D+C(jw -,A)-1bE A forallwER} (11.2)

where the matrices are A E Rmxm, P E R'" , C e R- Xm, D Rnu, X, and m ranges

over all nonnegative integers. Furthermore, define a subset of TZ , as

BIZ, :- {(i, b ) E 1Z& : sup e(/b + C (jwI - ) < 1} (11.3)

The set of components that the pair (G, IZ,) define are

1 [ A + B2bDZC B1 WO B2 + B, DZD12 1 [ ]
- I ZC A +  BZDnC f3ZD12  (11.4)

C 2+ D21 ZCI D21WC D22 + D21DZD 12 J [i
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where Z (I -and W (I-bD) and the quadruple ( ,B b) E
B1ZA. ,

In a diagram, this is just F,. (G(s), A(s)), where A(s) = b + 0 (sI - A) -b. This is

shown below.

,% .v

U~ .

Figure 11.2 General, Uncertain Component Model

This is the general model we will use for a component with structured, unmodeled dynam-

ics.

Remark: To simplify the discussion, we will treat the perturbations as actual components.

This is implicit in the state-space manner that we have written the perturbed corn-

ponent. That way, we avoid the technical dilemma which occurs when modeling,

say, the constant component g = 1 using a LFT on G defined as

G(s) :=[s+a (11.5)
b 1

Note that regardless of A(s), the linear fractional transformation Fu (G, A) = 1, so

that this does indeed represent the constant component g = 1. However, the Ps test

we are about to describe would give that the uncertainty in this component, if large

enough, can cause instability in any closed loop system with this component. If we

treat the uncertainty as components, then this interpretation is correct. 0

Finally, we define an uncertain plant as a linear interconnection of uncertain components,

that is itself an uncertain component. Therefore, through its actual inputs and outputs, the

dynamics are stabilizable and detectable. A collection of uncertain components defines a

new uncertainty structure that also has the block diagonal form. Simply by reordering each N

of the separate uncertainties, we can assume the structure is like that defined in section 3.

The plant also has a multivariable exogenous disturbance and multivariable error. These

are additional injections to the component dynamics, and various internal signals from the

components. Hence, the uncertain plant is described by a known dynamical system P(s),

li 0
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and a given uncertainty set A. In particular, P is described by the state space equations

[ A B1  B 2  B 3  x
Y1 C, D11 D12 D13 u1 (11.6) '

Y2 C2 D21 D22 D 23  U2

Y3 C 3 D31 D32 D33 U3

where A is stabilizable through B3 , and detectable via C3 . Let K stabilize the nominal, ie.

K stabilizes the dynamic system described by A, B3 , C3 , D33. The diagram below shows

the perturbed plant with controller K. The signal u3 is the manipulated variable, and this

depends on the measurements, y3, via the control law u3 (s) = K(s)y3 (s). The signal u2 is

the exogenous disturbance, and Y2 is the error. A stable, finite dimensional A(s) E BRA

is the perturbation, and this relates ul to yi via the "feedback" ul(s) = A(s)yj(s).

A

U1 ,

Figure 11.3 Perturbed Plant with Feedback Controller

What questions would we like to answer? .

" determine whether the closed loop is stable for all stable A(s) E BRA, and

" if so, determine how large (in II . norm) the perturbed disturbance to error map

will get. ,

11.3 Frequency domain robustness tests

We have the following facts/assumptions:

9 The controller stabilizes the nominal, hence the internal dynamics of F (P, K) are

stable. Let M(s) := F (P(s), K(s)), the closed loop transfer function from (ul, u2)

to (yI, Y2). The perturbed disturbance-to-error transfer function is Fu (M(s), A(s)). t,'-

o The perturbations are themselves viewed as stable components. Therefore, the per-

turbed closed loop is stable if and only if the transfer function (I - Ml,,(s)A(s)) - 1 is

stable. As we shall now see, this can be readily cast as a i test on the loop transfer

function Mii(jw).

-

'q - ~~'' d ~ v ~ -- I
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Theorem 11.3 (Robust Stability) The perturbed closed loop is stable for all A(.) E

BR4, if and only if sup p, (M1I(jw)) _ 1.
w0

Proof:

As we have pointed out, we need only check the stability of the transfer function

(I- M 1 (s)A(s)) - for each A(s) E BIZ,, from Theorem 11.1. Let A(s) be an S

arbitrary element of BIRA, and suppose sup pa (MI, (jw)) _< 1. Both are sta-

ble, therefore using Theorem 11.1, we only need to show that the Nyquist plot for

(I + Mi(jw)A(jw)) does not pass through or encircle the origin. For Z > 0, but suffi-

ciently small, the interconnection of M11 and iA will be stable by continuity of eigen- S

values (or small gain theorem). Hence the nyquist plot of (I + ZMii(jw)A(jw)) must

not pass through or encircle the origin. For every e E [Z, 1] and every w E [-cc, oo],

&(CA (jw))<1I det (I + fM (jw)A(jw)) # 0 (11.7)

P [MiU(jw)] < 1

Setting c = 1 in (11.7) gives that the Nyquist plot for (I + Mii(jw)A(jw)) does not

pass through the origin. But, it cannot encircle the origin either. To see this, recall'..-e

that for small enough E, it did not encircle the origin. As f 7 1, the Nyquist curve

of (I + fMii(jw)A(jw)) deforms continuously with e, and (11.7) guarantees that it

never passes through the origin. This implies that the number of encirclements W

must stay the same, namely zero, so the actual perturbed loop (f = 1) is indeed

stable. A rigorous homotopy argument for this deformation proof can be found in

[CheD].

Suppose sup p [M i l (jw)] > 1. Then for some finite Cv E R, p [Mll(jJv)] > 1. Choose a

constant, complex matrix A, E A such that det (I + Mji(jC)A) = 0, and a (A,) <

1. This is always possible. Then the interconnection with M 11 and A, has a pole at

s = j&. It is a fairly simple task [CheD] to find a A(s) E BIZ4 that interpolates A, .-

at s = j&. This choice for A(s) destabilizes the loop, and completes the proof.

Next, we answer the question of robust performance - "How large does the perturbed

disturbance-to-error map, F,, (M(s), A(s)) get as A takes on various values in TRA?

Theorem 11.4 (Robust Performance) Let P be an uncertain plant as defined in (11.6), %

A be a given uncertainty structure, and K be a LTIFD controller that stabilizes the 0.

nominal part of P, ie. K stabilizes the quadruple (A, B 3 , C3 , D3 3 ). Define an augmented

structure A as

{diag [A, A 2 1 A E A, A 2 E C, nu2xn.18

J,
%
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so that & is compatible in dimension to M (jw) := F (P, K) (jw).

Then, the perturbed closed loop is stable, and IIF, (M, A) I1 < 1 for all A(s) E BIZA if
and only if sup p,& (M(jw)) < 1.

Proof:

First, we always have

sup AA (Mi(jw)) < sup IA,& (M(jw)) < 1 (11.9)

so using the Robust Stability theorem, for all such A(s), the perturbed loop is

stable. Let A(s) E BTJL, and let w be arbitrary. Note that A(jw) G A and

a(A(jw)) < 1. Since t ,& (M(jw)) < 1, Theorem 8.3 implies that

a (F. (M(jw),A(jw))) < 1 (11.10)

Therefore, for such a A(s), we get that IIF (M, A) o < 1.

-- Suppose that sup p,& (M(jw)) > 1. If, in fact, sup y& (M1I(jw)) > 1, then the loop can
be destabilized using an element of BRA as lescribed in the proof of Theorem 11.3

Otherwise, choose a finite 6 E R and A , 0 :=E such that b ) < 1
and ,

det (I - M(jc)) = 0 
(11.11)

Again, use the results in [CheD] to interpolate a stable, rational A(s) such that

IIA(s)ik. < 1 and A, - A(jo). Then,

det 1 J - M 11(jC) M12(jC) A(jCV) = 0. (11.12)
G01 M21(jCV) M22(jiD) 0 A2

Since & (A2 ) < 1, (11.12) implies that

a(F. (M(j&), A(j&))) > 1 (11.13)

which proves the desired result. I

These theorems can also be scaled so that the bound on robustness is not 1, but some
other positive number. The details are the same, using the basic ideas from the theorems

in section 8.2.

V"
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12 Counterexamples showing that [M need not equal

the upper bound

This section shows, via two detailed examples, that IL (M) is not always equal to the

& (DMD-') upper bound. An appealing aspect of these examples is their simplicity, each

using only elementary linear algebra. 0

12.1 2 repeated scalar blocks

We begin with the block structure s = 2 and f = 0. We use the results from section 9 on

uncertain difference equations to derive the counterexample.

12.1.a Let a E (0, 1) andy E (0, 1) be given. Define the matrix Me R 4E 4 by 0

0 1 0 17 0 0

M 2 0 a 0(12.1)

0 -2a 0 -a

Define a block structure A := {612x2 : 6 E C}. We will investigate the stability of

the difference equation

Xk+l = F (M, A) xk (12.2)

with various assumptions on the uncertainty A E A. Recall that the results of

section 9 addressed just this problem.

12.1.b For all A E BA the LFT F (M, A) is well defined, and appears as

0 -aS 1
0F (M, A)= I +a lab (12.3),'-'

1 - a6 0.'...

Note that for each such A, the spectral radius of F1 (M, A) is simply v/T, which

by assumption is less than 1. Therefore, for fixed, but unknown uncertain-

ties, A E BA, the system in equation (12.2) is stable. Consequently, with respect

to the structure A := {diag[612 12 ,A] :6 E C,A E A}, Theorem 9.1 implies that S

I(M) < 1. %

C-C

,',"; . .
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12.1.c Consider the time varying system
p

Xk+1 = F. (M, A,) xk (12.4)

where Ak E BA for each time step k. Take Ak 12x2 when k is even, and
Ak := -2x2 when k is odd. Then for k even, Xk+2 depends on Xk by the relation

- 1+a 1-a -

10 1- a +a +a Xk (12.5)
+a 1-a a 0

which simplifies to

Xk(T-a)2 0 2 (12.6)xk (0 a)2

(1+ a)

For any 7f E (0, 1), it is easy to chose a E (0, 1) so that (12.6), and hence (12.4), is

unstable. For such choices then, we must have

inf a (DMD-') > 1 (12.7)
DO 

4 ,
otherwise, by 9.1.c, the time varying system in (12.4) would be stable for Ak E
BA, regardless of the variation with k. .

Remark: A bit more analysis can show that by proper choice of -' and a, the value of

D Eb

can be made arbitrarily close to 1 + v'2 while ll (M) < 1.

12.2 1 repeated scalar block, 2 full blocks

Next is an example for a block structure with s = 1 and f = 2. It is broken down into 8 _

facts.

12.2.a First, let A = {diag [b,6b21 :6, E C}. Then (with respect to this structure) for

any complex r $ 0,

This follows as a specidA case of Theorem 3.4.

-- Li



12.2.b Let a E C with lal < 1. Define G onI151 1 as a o l(

G(8)= Ia 1-a0 (12.8)

Note that everywhere in the unit disk, G is defined and looks like [0 Hence

from 12.2.a S

sup / [G(6)] = 1 (12.9)
161<1

12.2.c G in (12.8), is a linear fractional transformation. In particular, define the matrix

M by •
a 0 2a 0

0 -a 0 -2a (12.10)
0 1 0 1
1 0 1 0

It is simple to verify that for each bi6 < 1, G(b) = F. (M, b2x2).

12.2.d Define A, = {6/2.2 : 6 E C}, and A 2 = {diag [81,2] : 6, E C}. Certainly /1,2 (M)

makes sense (dimensions are compatible), and /1,2 (M) 1, since 112 (M 22 ) = 1.

Using (12.2.b) and (12.2.c), and Theorem 8.3, with 6 = 1, gives /1, 2 (M) 1. •,~ V
Therefore /11,2 (M) = 1.

12.2.e Define the correct scaling sets E, and V2 compatible with A, and A 2. For any

_3 1, and any D2 E V 2

sup (D2F.(M, 812.2)D2) + jai (12.11)

This follows from the fact that for any D2 E E>2,

0 d, 1+- a6 1.1)"
D2 F (M, 612 X2) D-' = 10 1 - ab (12.12)

2 d2 1- ab

I-- 00

.,.. 1+

_ . A. - - % !" %- V o- % A .' % AJ - , V -o ' . % V % m% , + .*~,U~ * %A.% ... ,+ A r% A= d %" .- '
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and from the behavior of the nonzero elements of G(8) on the edge of disks of radius

, which is shown in the figure below.

magnitudes - 6 e

-+IaI - '

0.0 0.2 0.4 0.6 0.8 1.0

angle, 0

Figure 12.1 Magnitudes of Nonzero Elements of G(S)

12.2.f Fact: Let 7 > 0. If there is a A, E A,, &(A1 ) < such that

9 I- M11 A 1 is invertible

[F. (M, A,)] >'r.,i

then
inf D M 12  DT"  0 (12.13)

[(Vi 0 ) M21 M2 2  0 0 )]

This fact is simply the contrapositive of Lemma 8.11.

12.2.g If we choose a 3 1 such that 3 >/3, then we can apply the results from

(12.2.e) and (12.2.f) above to conclude that

inf D 0 M1 M12 (DT' 0 > (12.14)D,,Da 0 D , M21 M2,2 D 1
0ID~ 0 D'

The logic is as follows: first suppose )3 is chosen so that 3 >aI > Then from

equation (12.12) we know that for every D 2 E D 2, there is a 6 E C with )6) < 1 such -6

that

a (D 2F, (M, 12x2)D ") > 3 (12.15)

This satisfies the conditions of (12.2.f), therefore, for each D2  D2

inf a[(Dr 0 )(M,, M, 2 )(D-( 0 )] >/3. (12.16)
DiE, R 0 D 2  A1 2 A12 0 D2 /j

p*| ~E ~. V .** ~~,>d



81

Carrying out the infimum over E)2 in (12.16) yields

inf 5 (DMD- ') >/3 (12.17)D EV

Therefore the question becomes: "What is that largest / such that _ >a 9 > Sim-

ple algebra gives that this largest / is /3 = 2 Note that as Jal /
the quantity / 1+Vf. 2_0

12.2.h In summary: Let c > 0. Choose a E C, Jai < 1 such that .-

Jaj + 1 + ja+ 61al +I > 1+V2 (12.18)

Define M as in (12.10). Then, with respect to the augmented structure described in

(12.2.d), L (M) = 1 but inf &(DMD-') > 1+v2-e.

This example eliminates many other block structures as well. Since the full blocks were

1 x 1 in this example, they may be viewed as repeated scalar blocks instead. Therefore,

this counterexample works for s=2, f= 1, and s=3, f=0 too.

12.3 Conclusions

In light of this example, it appears that the upper bound can be quite far from the actual

value of 1L, especially when s 0 0. For instance, in this example, the upper bound (in the

limit) equals (1 + VZ) x p. Limited computing experience with uncertainty structures

having s 0 0 indicates that there is often a gap, though usually not as large. For block

structures with no repeated scalar blocks, s = 0, this contrasts directly with our computa-

tional experience. In that case, the worst known ratio of upper bound to 14 is 1.14, [MorD],
and usually, it is much closer to 1. Given that the upper bound can be computed, and in

general, it is impossible to verify that a lower bound is indeed ji, how should this all be

interpreted?

Suppose an uncertainty structure has only full blocks, and the perturbations are modeled

as linear, time invariant. Using the constant, state space 11 test in [DoyP] requires that the

actual uncertainty structure be augmented with a large (size of state dimension) repeated 'S

scalar block. In view of the counterexample, it is likely that the upper bound will not

equal p, and the conclusions will be conservative. In this situation, a frequency domain
upper bound test, [DoyWS], is appropriate, since it scales (a peak > 1 does give useful

information), and with this block structure, we always have found y and the upper bound
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very close. It is important to realize that the frequency domain test only gives conclusions

about linear, time invariant perturbations.

If the perturbations are time varying and/or nonlinear, then, in general the frequency

domain tests are not valid, though [Saf2] derives conditions on the frequency dependent

scalings which allow for conclusions about slope bounded nonlinearities. The upper bound

approaches based on constant matrix operations (for example, the optimal constant

scaling, section 10), handle this type of uncertainty, and the motivation which led to

their development was the relationship between u and the upper bound, and the role this

difference plays in the behavior of linear fractional transformations.

I

I

I

-!

.. ,
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13 A power method for the structured singular value

This section presents an iterative algorithm to compute lower bounds for the structured

singular value. The algorithm resembles a mixture of power methods for eigenvalues and

singular values, which is not surprizing, since the structured singular value can be viewed
as a generalization of both. If the algorithm converges, a lower bound for it results. We S

prove that y is always an equilibrium point of the algorithm, however, since in general

there are many equilibrium points, we also discuss heuristic ideas to achieve convergence.

In [FanT], the calculation of p is reformulated as a smooth optimization problem. As with

all of the known exact expressions for p, the function that is to be maximized has local 0

maximum which are not global, so in general the method yields only lower bounds for /I.

Similar comments can be made for the ideas in [Doy] and [Hel], as well as the algorithm
in this paper. The contribution here is yet another lower bound algorithm to aid in the

analysis of robustness of systems with structured uncertainty. This section addresses the S

lower bound, and develops a power algorithm aimed at quickly finding local maximums of .4

r: BA -- R, defined by r (A) = p (AM). Some of the results are generalizations of those

found in [DanKL].

Since we will be interested in loc4l maximums of the function r (A) = p (AM), we be-

gin with some facts from perturbation theory, which will assist in characterizing local

phenomena.

0

13.1 Matrix Facts

13.1.1 Derivatives of eigenvalues

In this section we review the differentiablity properties of eigenvalues and eigenvectors of

matrices depending analytically on a real variable. All material comes from [Kat].

Suppose M: R -C"'" is an analytic function of the real parameter t. If A is a eigenvalue
of M,, := M(0) of multiplicity one, then for some open interval containing 0, this eigenvalue

is a analytic function of t, as are the eigenvectors associated with it. That is, suppose there

are nonzero x,,,y, E C', satisfying .1,

yoxo =1
AIxo = AoXo (13.1)
M,,y = AoYo

Then there is an e > 0 and analytic functions x: (-, e) -*C , y: (-, ) -- C' , A: (-, f)--ONE
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C such that for all t E (-c, e)
y~x --1

Mx =Ax (13.2)
M*Y A

This follows from [Kat]. Hence, we can differentiate and obtain

A(O) = y,-Mk(0)Xo (13.3)

13.1.2 Linear algebra lemmas

The next two lemmas are elementary linear algebra. They will be used in the main theorem

of the next section.

Lemma 13.1 Let y, x E Cn with y $ 0 and x $ 0. There exists d E R, d > 0, such that

y = dx if and only if Re (y*Wx) < 0 for every W E C ' satisfying W + W* < 0.

Proof: The "only if" is obvious, so we just prove the "if". As usual, let yi and xi denote

the i'th element of y and x, and W,j denote the i,j element of W E C" 'lx. Begin

by letting W be zero everywhere, except in the i,i element, and set W,. = or + jw,

for some o _ 0 and wi E R. Obviously W satisfies the hypothesis. Then

Re (y*Wx) = oi Re (gixi) - w, im (gxi)

If Im (gixi) 5 0, then it would be possible to choose wi E R to violate the Re (y*Wx) _

0 hypothesis. Hence Im (ixi) = 0. Similarly, with the only restriction on ao being

o*i : 0, we must have Re (ixi) > 0. Therefore, for each i, we can write ."

Xi -- rieJv'i

where si > 0, ri > 0, and Oi, Oi E R. From the above discussion, it is clear that for

each i,

si= 0 or ri = 0 or Oi = 0i. (13.4)

Now, let 1 0 k be two integers < n. Let w E R be arbitrary. Define a matrix W

by W, := -e-jw, Wk,1 := e and zero everywhere else. Note that W + W" = 0, so

trivially W satisfies the hypothesis. In this case

Re (y*Wx) = -sirk cos (0 1 - ' - w) + skrl cos (01 - Ok + W)

Since w is free and neither x or y is 0, we have for all i, si = 0 if and only if ri = 0.

Consequently, suppose that sk 0 and s5 0 0. Recall from (13.4) that this means

i w , a rt- d - i -I .... I i
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Ok = 0 and 7k, 01O. We claim that sirk =skri. To see this, suppose instead that :?
skrj : sirk. By choosing w := Ok - 01 or w := 7 + Ok - O, we get that

Re (y*Wx) = jsjrj - sirk I > 0

This contradicts the original assumptions, hence we must have sirk =skrj. Therefore ,.

81 8k

ri rk

for every k 1 with sA; 3 0 and st - 0. Define d > 0 to be this ratio. For every i, ,,
we have yj dxi as desired. :

PLemma 13.2 Let a and b be two nonzero vectors in Cn . Then there exists a hernnitian,.

positive definite D E Cnxn , such that Db = a ifand only if b* a E (0, oo).

Proof. Again, the "only if" is easy. Conversely, suppose that jjbjj 1. If not, simply
scale appropriately. Let Bi. E C n , (n - 1) such that the matrix K := [b B±L] E C n is

unitary. Decompose a in this basis, ie. find a scalar a E C and E" Cn - 1 such that

a = ab + Bj.(

By assumption, a is real and positive. Let W E C (" - l ) x ( n - 1 ) be any herm-itian matrix
such that W - 1(* is positive definite. It is simple to check that"3'.:

D= A- cW K-

works. '

13.2 Decomposition at p

We need to define a set E),d, similar to V) from section 3.1. It is the same as E), except the '
elements are restricted only to be positive sem-i- definite, rather than positive definite. :,

E),d =diag [D,... Ds,,d Il, ,... df/, :~ Di E Cri Xr, Di = D* > 0, di E R, di >! 0}
(13.5)

,'.

Theorem 13.3 Let M E Cnx ' be given, and suppose A,, > 0 is a distinct eigenvalue..

of M, with right and left eigenvectors x and y respectively, and y*x = 1. Suppose that
p(M) = A,,. If the function r : BA -- R defined by r(A) = p(AM) has a local maximum ,
(with respect to BA ) at A =- I then there exists a D E A~d such that y = D2X. ! :



ITM -2 '11 T .- 17 17 X. V-.- .1--- - V

86

Proof: Let G E A with G + G* < 0. Obviously, G appears as

diag[gI,.,, G.] (13.6)

where Re(gi) <_ 0, and Gj + G <_ 0 for all i and j. Obviously, at t - 0, e t = I, and

e t E BA for all t > 0. Define a matrix function W: R--+ C 1X by W(t):= eGtM.

Note that at t = 0, A, is a simple eigenvalue of W(0), with x and y the right and

left eigenvectors. For some nonempty interval containing 0, this eigenvalue is always

simple, and hence there is an analytic function of the real variable t, A(t), defined

on that interval, such that A(t) is and eigenvalue of W(t) for all t and A(0) = Ao. It

is easy to calculate A(0), namely "is5

A(0) = y*W(o)x = Ay*Gx (13.7)

By hypothesis, A, > 0, p(M) = A., and the function p (AM) has a local maximum at

A = I. Therefore

Re ( A(t) )< 0 (13.8)

which says that the magnitude of A must be nonincreasing at t = 0. Partition x and

y compatibly with the block structure A,
Xrl Yr1

X -2 Y r2

Sx. ,°

X = Yr. (13.9)
Xmi YMi

Xm2 YM 2

X•Tmf LYm

where x,.,, Y7,. E C?. and Xm,, IrYm, E Cm for each i and j. Using this "block notation",

and substituting (13.6) and (13.7) into (13.8) yields

Re -giyx,, + EYmGjxm, <0. (13.10)

This must hold for arbitrary G E A satisfying G + G* < 0. Applying lemmas 3.1
and 3.2, we conclude that for each i, there is a Di = D E Cn~n, Di > 0 such that

Yri = Dix,. and for each j, there is a d, e R, d, > 0 such that yi, = djx,,. Arranging
all of these Di's and di's into one block diagonal D, and taking the hermitian square

root proves the lemma.

Remark: The only restrictive assumption we have made in the above lemma is that the

eigenvalue A., is distinct. This assures differentiabilty. Since A., is a solution of a

max maxjA, (MA) f, it is likely that at the maximum it will be distinct.
AEBA 

I
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13.3 Decomposition

Recall the definition of V from section 7. It was introduced to find descent directions for

Y. We will generalize the definition to be valid for any singular value, not just a.

Let M be a complex matrix with SVD -S
M = 3UV* + U2E2 V2 *. (13.11)

In this setting, / is any singular value of M, not necessarily &(M), but none of the singular

values in E 2 should equal $. We use the integer r > 0, to denote the multiplicity of ft.

Hence U,V E C"'IX,U*U = V*V = I,,U2 ,V2  Cnx(n-), UU 2 = V*V2 = In-.

We proceed to define the set VM,,. Partition U and V compatibly with A as

u A. V= B. (13.12)
El F1

where Ai, Bi E C'i T , Ei, Fi E C ' Xr.

For 71 E C", with 11771 -1, define the following components

Pi"= A:irpIA* - B:iri7*B := AB(13.13)

P. 7 (EI-E -

Let VM,P C X be the set of all such P".
VM,a := {diag [P',... ,P11,P1,... ,-.] : ',p' in (13.13),77 E C", 1I1iII = i}. (13.14)

Note that here we use two subscripts on V. The first is the matrix, and the second is the

singular value in question. The main reason we introduce VM,, here is that if there is a %t

singular value, 3, of M, and 0 E VM,a, then 0 is a lower bound for p (M).

Theorem 13.4 Let M and a compatible block structure A be given. Suppose / is a
singular value of M with multiplicity r. Define VM,3 as in (13.14). Then 0 E Vm,,3 if and

only if there exists a vector x E C", a matrix X. E C"'"', a matrix Q E Q, such that

l[xii = 1, x*X. = 0, Xa-x = 0, and S

QM =,3xx" + XI. (13.15)

1111111 112411 Iq 61 11 11 Q Q -!k w . V V
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Proof: Let the SVD of M be

M = IUV* + U2E22V (13.16)

If 0 E VM,, then there exists a q E C*, 117711 = 1 such that

Ai7* Ai* - Bi77?* Bi* = 0 i < s
r (EiEj- *Fj )q0=O j f-1

These relations, and the partition in (13.12) imply that there is Q E Q such that

QU77 V71 (13.17)

Define x E Cn as the above: x := QU7 = Vii. Since jI'iI = 1 and U and V are

isometries, IIxjU = 1. Simple manipulation of (13.16) and (13.17) gives

(QM) x = (QM) V = /QUq = uV'q = 8x

x* (QM) = lU*Q* (QM) = Oq*V* = 0x"

Defining X-_ := M - ,/xx* completes the decomposition

-- Suppose Q, x, and X_. are given as in the hypothesis, so that

QM = Oxx* + Xi

Define Al/:= QM. A singular value decomposition of A is

Mf =, 3(QU)(V)* + (QU 2 ) r (V2 )*

Hence 6 is a singular value of k, and M x = Ox and M*x = 3x, and so there exists

a vector 'q E Cr, 117711 = 1 such that

X = QU7t = V7t

This implies that 0 E VM,6 as desired. 1.5

It is obvious from the decomposition that i0 is a lower bound for it (M) since 0 is an

eigenvalue of k = QM. The following corollary follows immediately.

Corollary 13.5 Let M and a compatible block structure A be given. Suppose D E E),
and that i0 is a singular value of DMD-' with multiplicity r. Define VDMD-1,P as above.
Then 0 E VDMD-I,O if and only if there exists a vector x E Cn, a matrix X1 E C'111, and

a matrix Q E Q such that Ill = 1, x*X± = 0, X.x = 0, and

QDMD- 1 = flxx" + XA_ (13.18)
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The main result of this section is that there is (almost) always a decomposition as in

(13.18) with /3 = p(M) (remember, any 03 satisfying (13.18) is a lower bound for j(U)).

A preliminary result toward that result is next.

Theorem 13.6 Let Q. E Q be the optimizer for max (QM), and suppose that the eigen- N,
QEQ

value associated with p (QoM) is distinct, call it A., and Ao is real and positive. lix and y 0

are the right and left eigenvectors of the eigenvalue Ao, then there exists a D E sd such

that QMx = Aox
2QoMx = Ao ' (13.19)x*D2 Q,,M = Ax*D2

Remark: If we consider local maximums of a function i: Q -+ R given by F (Q) = p (QM),
then the above theorem is not true. For 1 as defined here, there exist examples where
i' has a local maximum, but the decomposition described in (13.19) does not exist.

Proof: By Theorem 13.3, any maximizer of max (QM), is also a maximizer of max (AM).
QEQ QEBA%

Define M :- QoM, then A = I is a local maximizer for max (AS ). Apply lemmas

13.1 and 13.2 to prove the theorem. 0

In order to state the main theorem, we introduce some additional notation: partition the
vectors x and y compatibly with the block structure,

X'I Yrl
Xr,2  Yr 2  U

x = ,y Yr. (1320)
Xm, Ym1
Xm 2  YM2

with x71 , yr, E C" and x.,, Yn, E Cm -. We call these the "block components of x and y".

Theorem 13.7 Let the assumptions of Theorem 13.6 hold. Consider the block compo- _

nents of the eigenvectors x and y as in (13.20). If for all i, y:.x,, : 0, and for all j, neither %
Xm, nor yin, are the 0 vector, then there exists a D E 1) such that

Q,,DMD-'(Dx) = Ao (Dx)
(Dx) QoDMD-' = Ao (Dx)*. (13.21)

Remark: This result was first shown in [FanT], for the case of s = 0. V%
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, .

Proof: These additional assumptions guarantee that the D's in Theorem 13.6 are in fact

positive definite, rearranging equation (13.19) gives (13.21). This is the decomposi-

tion, since Dx is both a right and left eigenvector of Q 0DMD-' associated with the

eigenvalue A,. 0

13.4 Lower bound power algorithm

How can this decomposition be used? In this section, we propose an iterative algorithm to

find such decompositions, and therefore get lower bounds for Az. The possible advantage

this algorithm has over finding local maximums of the max p (QM) lower bound is that

there will be no costly eigenvalue/eigenvector evaluations, which would be necessary for

cost/gradient calculations. Numerical experimentation indicates that the algorithm often

completes successfully and quickly.

Rewriting (13.21), we want to find a Q E Q, D E D9, /3 > 0, and x E C' with lxi = 1y

suc] that '.
QDMD'lx = #3x *

D-M*DQ*x = 3x

which can be rewritten as
M (D-1x) = 3 (D-Q*x)
M* (DQ*x) = /3 (Dx).

For a given D, Q, and x, define vectors a, b, z, and w by

b := D-1x
a := D-Q*x
z := DQ*x (13.22) ,Z S*
w := Dx

With this definition, we have Mb = aa and M*z aw. We can eliminate x from (13.22), :

and redefine D = D' to get
b =Qa
z = Q*w
z = Da
b = D-'w

We would like to write these four new relationships in a manner that does not involve the
matrices Q and D. With a few technical conditions, this can be done. In order to simplify

matricesk Qsntruihae ecnclod tions this h ca be done fn orderto simply P

the upcoming formulas, we will consider a block structure with s 1, f = 1. By simply

duplicating the appropriate formulas for additional blocks, it is straightforward to extend

the algorithm to more general structures. Hence the sets E) and Q look like

D = {diag[A,d Im,I : D, E Cnx--,D , = D-,d1 E R} (13.23)

Q = {diag[qI,,Q]: qq, = 1,Q 2 E G 'n'× IQ;Q2 = I}. (13.24)
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With respect to this, we will partition the vectors accordingly, so z Z1 where
Z2zi E C" and z2 E Cml, and likewise for the other vectors.

Lemma 13.8 Let r, andm, be positive integers. Let z1, wo, bl, a1 E C' and z 2 , b2 , 2, a2 E
Cm' be nonzero vectord with altw # 0. Then, there exists a D E ED, and Q E Q such that

b =Qa
Z = Q*W
Z= Da
b = D-1w

if and only if
zI = ailwl W

W 2

I a2lw

Proof: .

.
-Follows by direct substitution. 

'

] ,- Let q1... = since this is well defined. Likewise, choose d2 = .By assumption,

d2 is well defined, and nonzero.

Obviously, 11w 211 = IIz21D, so let Q2 be the rotation that takes w2 into z 2. A quick

calculation shows that Q2 also rotates b2 into a2 .
1 =1

Q2 b2 =-Qw =-z2 = aW 11

Next, we calculate azi Plugging inn gives az h aow . By assumption, this

is nonzero, hence Lemma 13.2 yields a hermitian, positive definite D1 such that

Da 1 = z1. As we hope, D1 takes b into w too.

O~b1 = 4t1O~a1 = tz = Wl o1

Defining D and Q in the obvious manner completes the proof. i Z A

This the main theorem.

Thsgives u h anterm
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Theorem 13.9 Let M E C"'" be given, and let A be the two block (s = 1,f = 1)

structure defined above, with block sizes r, and ml, where r, + n1 = n. Suppose 13 > 0 is

given. Then there exists Q E Q, D E D, x [' ] E Cn, X± E Cnx(n 1 ) such that

UIXll = 1,X1 0 0, X2 #A0
xX 1 = 0, XxX = 0 (13.25)

QDMD-' = 3xx + X±,

if and only if there exists nonzero vectors zi, w1 , b1, al E Cr' and z2 , w 2 , b2, a2 E Cm 1 with
alw1 # 0 and

3a =Mb I

Z-WI

a2  (13.26)

3w = M*z

b2 = W- l  
'

11W211"I

Remark: In order to find decompositions using the representation this theorem allows

(equation (13.26) - free of Q's and D's), we can restrict ourselves to unit vectors
a, b, z, w. Why? Suppose we find nonzero vectors satifying (13.26). Examining these

equations, it is clear that scaling z and w by a # 0 and scaling b and a by 3 #6 0
does not affect any of the equalities in (13.26). Since these equations always imply

that lizil = 1lwil, and hall = Ilbil, we can indeed look only at unit vectors.
ir

In the above theorem, we have written the conditions (13.26) in a suggestive manner. We
will attempt to find solutions to (13.26) in a iterative fashion. In particular, for i = 1,2, r

-I

N
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let vectors aj, bib, zi,, and wi, evolve as
-0

1lk+ a -Mb ,,

Swlkal,+, I

1a2,+I +1 (13.27) 0

"I a*b,wl,+,

ja.+
1

j £1.

j~~l=a-2k+l
IjW2hI k+ 1

where I,, and &+ are chosen > 0, so that Iak+1 11 = (I w.+l = 1.

Note also that if the initial b and w vectors that start the iterat:on are unit vectors, then

at every step, all vectors, a, b, z, and w will be unit length.

13.a There are many other iterative algorithms besides (13.27) that have decompositions

(Theorem 13.7) as equilibrium points. For instance, simply rearranging the order of
our iteration in (13.27) will yield a different algorithm, yet decompositions are still

the equilibrium points. What we really want is an algorithm where the only stable

equilibrium points are decompositions with large (relative to y(M)) converged /3
values. Other iterations schemes may be better suited toward this goal - discovering

them will give a better lower bound algorithm.

13.b Potential problems are:

e Mbk = 0 (M*zk = 0), then ak+i (w+,) is not well defined. %

. a0,w, = 0, then the vectors zl ,,, and/or bl,+, are not well defined. .
* Either IIw II = 0 or =lakIl = 0, making bz and/or Z2 not well defined.

The heuristic fix when any of these happen is to restart the algorithm at a different

initial condition.

13.c If everything goes ok, and all of the indexed quantities converge, then we must

have / = 1. This is easy to see. Suppose the equations in (13.26) are satisfied

(convergence of the algorithm in (13.27)), but the 3 associated with b and a is 3 and

the 3 associated with z and w is /. The converged equations imply that there exists -
a Q E Q and D E D such that QDMD-1 (Db) = (Db) and (QDMD-')*(Db) =

-3 (Db). Since the O's are real, they must be equal.

!.
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13.d * If there is only the first block, which is a scalar times identity block, the iteration

would be a power iteration for the largest (in magnitude) eigenvalue of the

matrix M. Since p for I scalar times identity block is the spectral radius, the

algorithm we have proposed reduces to a valid algorithm in the special case of

1 scalar times identity block.

* If there is only the second block, which is a full block, the iteration becomes

a eigenvalue power algorithm for M*M, hence it will give the largest singular
value of M. Again, with respect to this specific block structure, this is what we

want.

Hence, the iteration we have proposed is a even mix of two separate, well understood

iterations. Both of these converge to the largest eigenvalue/singular value. Therefore,

we are led to guess (incorrectly) that this algorithm will converge to the largest 13
for which a decomposition described in Theorem 13.4 exists. V

Extensive computational experience has led to the following conclusions:

1. The difficulties described in 13.b above do not seem to occur in practice. While it
is easy to construct matrices where these problems happen, running the algorithm

on frequency responses of actual closed loop systems has not been a problem.

2. Limit cycles occur more often when there are large scalar times identity blocks. The

presence of a stable limit cycle does not immediately give rise to a lower bound for

3. If s = 0 (and often times when s > 0), the algorithm usually performs well, con-
verging quickly, and providing a lower bound which is better than p (M). We have

successfully run tests on 40 x 40 complex matrices with up to 40 complex uncertain-

ties.

4. The promising properties described above are not always true. We have

examples of a stable equilibrium point with the corresponding / < p (M). With lack

of any further insight, we do not bother to reproduce this here. The block structure

was five I x 1 blocks.

5. In general, there are several stable equilibrium points, with different values of a.

This is to be contrasted with the conventional power algorithms for p and &, where

only the largest ones are stable.

141
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13.5 Choosing starting vectors

This section heuristically addresses the question of "what should the starting vectors be?"

To motivate what follows, suppose that li(M) = inf a (DMD-'), and that the infimum

is achieved by D.. Then, from Theorem 13.4, we must have 0 E VDoMDo,, . Therefore, if

M: DMD-1 = 1 UV* + U2 E2 V2  (13.28)

is a singular value decomposition, there is a 7 E C" and Q E Q such that

k MV = YQV7 (13.29)
, *'M(QV 1) = v

Hence, with respect to M, (which has p(M) = u(M)), the vectors

w :=v j 
(13.30)

are the correct vectors for the decompostion. We therefore propose the following.

1. Using a cheap method, [Osb], find a Do that nearly minimizes inf a (DMD- )DED.

2. Absorb this into M, ie., define Mf:= DoMD- 1

3. choose b, = w, to be a right singular vector associated with & (M)

4. perform the iteration on M with these starting vectors

PZ"

| .I

I
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14 Example

To conclude, we analyze the robustness of a nominally stable system subject to struc-

tured perturbations. The example has no physical interpretation, and is intended only to 0

illustrate the various robustness theorems we have presented.

The system G (which can be interpreted as F (P(s), K(s)) as in the previous section) is

given below. It has 4 states, and 9 inputs and 9 outputs.

Natrix :G. a

states 4
X1 x2 x3 X4 -. .

xl -6.40-01 -5.4710+0 -4.185400 2.198e+00

z2 0.000o+00 -3.000o400 0.000e+00 0.000.+00
x3 2.198e+00) -5. 098*+00 -2.627e+00 4.185e+00

x4 -1.987.400 -6.756e00 -6.384.+00 1.558,+00 -w

Natrix G.b
states 4 inputs 9,

ul u2 u3 u4 us u6 U7 u8 U9
xl 5.336e-Ol 0.000e+O0 0.000eO0 0.000.00 0.000.400 0.000.+00 0.0000+00 0.000.+00 7.000.-0l
x2 O. 000e O, 0(00+0X0 0.0O00e+00 O. O(O*+00 2.668e-01 8.893*-02 O. 00e+00 O.0O00*+O0 7,000*-01

z3 5.336.-01 0.000.00 5.336.-01 2.668*-Ol 0.000.+00 0.00040+0 0.000.+00 0.000e+00 7.000.-01 c'
x4 0.000.+00 5.336.-al 0.000.+00 0.000400 0.000.+00 0.000.+00 -8.893e-02 8.893.-02 7.000.-01

states 4 output. 9 ,

Xl z2 x3 4

yi 2.500e-a1 0.000s400 2.500e-0l 0.000.+00

y2 0.000e+ 2.500.-Ol 0.000,+00 0.000.400 IT
y3 0.000e00 0.000e+00 0.0000e+0 2.500e-l

y4 0.000+00 5.000s-01 0.000e+O0 0.000e+00
T5 0.000+00 5.000.-tl 0.00040+0 5.000.-01

6 0.000.+00 0.0000+0 0.000+00 1.500.+0

y7 0.000e+00 1.500.+00 0.000e)0 0.000.+00

y8 0.000.+00 0.000.+00 1.500.+00 1.500.+00

y9 0.000.+00 -1.0000 0.000.+00 1.000+"00

The first 8 inputs and outputs are associated with the perturbation structure, A, s =

3, f = 0, rl = 3, r2 = 2, r3 = 3. The last input and output correspond to the exogenous

disturbance and resulting error. Hence, for robust performance calculations, we will %
append a 1 x 1 full block to A for the performance calculation. For notational purposes,
we partition G(s) into

G Gil G12 (14.1)I= G21 G22

where Gll(s) is 8 x 8, and G2 2(s) is 1 x 1.

S " " "" % N
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We first calculate the robustness with respect to linear, time invariant perturbations, using

the frequency domain techniques described in the section 11. This is done via a p test on

Gui(jw). At each frequency point, we calculate the a (DMD-') upper bound, and a lower

bound using the algorithm described in section 13.

Figure 14.1 is simply the singular values of G11(jw) versus w. This implies that

for any unstructured (any 8 x 8), stable perturbation, with induced norm from

L2 --+ L 2 less than the perturbed closed loop system is stable. The Nyquist

argument also shows that there is a linear, time invariant, unstructured, stable V

perturbation, A,, with sup a (A(jw)) = that does cause instability.
WER3.

* Next, we calculate upper and lower bounds for y (G1u(jw)), with respect to the

block structure A := {diag [b13, 6212, 6313]: 6i E C}. The upper bound is based

Pon the generalized gradient material from section 6.1, and the lower bound is the

iterative procedure described in section 13. These two curves are nearly equal, and

are shown in Figure 14.2. This implies that for FDLTI perturbations A(s) with the M
correct structure, the stability is preserved as long as IIA(s)II, < and there is ,C
a perturbation on that boundary that does cause instability.

(Gll(jw))

0.2-

0- .0
10-2 10

-
1 1 10 1 0

- 
10 1 0 1 0

frequency (radiansse*cond) frequency (radiansls8cond}

Figure 14.1 Frequency Response Singular Value Plot Figure 14.2 Frequency Response L plot

* What about performance? Nominally, the transfer function G22 describes the per-

formance, and this is shown in Figure 14.3. It has a peak value of 0.83. Under

perturbations this becomes F,, (G, A). To analyze the degradation of performance

due to the uncertainty, we use theorem 11.4, and an augmented block structure

A := {diag [A,]62 : A E A,62 E C} (14.2)

A p plot of a, (G(jw)) is shown in Figure 14.4. Applying a scaled version of theorem

%-Zp
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11.4 implies that for any structured A(s) with jIA(s)IIo, < -L, the perturbed loop

remains stable (we already knew that for an even greater radius from the pa test on

G11), and, the . norm of F, (G, A) is guaranteed to be < 1.18. V o

".0 1-t 25
IG (j w,)l A i ( C ( M ))

0.6 10 0-5 %_____

0.6- 0.750

0.- 0.25- .-

0.0 0.00 , . . . . . . . . .

tO-2 0'
-

l 10 10 2 10-2 ,10-11 10 10
2

frequency (radians/lscond) frequvncy (radians//scond) k

Figure 14.3 Nominal Disturbance to Error Frequency Response Figure 14.4 g Plot for Robust Performance :

Finally, we consider robust stability to time varying perturbations, using the optimal

constant D scaling result from section 10 to minimize the conservatism of the small gain

theorem, by taking into account the structure. This will give a sufficient condition for

robust stability to time varying, and also cone bounded, nonlinear perturbations as well. ''

(The correct formulas for continuous time systems are given in the appendix, and are .,

in the same spirit as (10.9) and (10.10)). Everything pertains to G11, since we are only

concerned with stability. From Figure 14.2, we know that the optimal value satisfies

inf [[DGe(s)D-j[oo sup inf& (D,,Gi(jw)D - ') = 0.64 (14.3)DEV - D EV '

We performed a 1 dimensional search to find the correct value of Y (in equation (10.10)).

Our rather crude gradient algorithm indicates that -y E (0.68,0.685). This is quite close

to the frequency varying optimal. The constant D scaling we get from setting a = 0.685

is given below.

Matrix D.opt BLOCK DIAGONAL rows a colum. 8

12 3
1 1.113e402 -7.369.401 6.100e+00

2 -2.662.+01 -1.638.401 5.527.+01

3 6.537.+00 7.397001 3.210s+01

4 5

4 3.716+01 -3.139s+01

5 4.586.401 1.9TS+01

. jz
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6s 7 a

6 3.118.+00 -1.112.+01 1.115.+01 0
7 6.516e+00 -2.682*+00 -3.690e+00

8 1.623.401 9.812.+00 -8.816*+00

If we scale G11(jw) with this constant scaling Figure 14.5 results. Note that the problem

is of the sort

inf sup ai[func(D,w)]. (14.4)
DEDw

We expect coalesced behavior at the minimum, and this is exactly what we have. In this

instance, though, the coalesced behavior is with respect to the w variable - Figure 14.5

shows this very clearly. _

0.4--

0.2- _ _ _

10-2 10-1 1 10 102

frequency (radians/second) 0

Figure 14.5 Singular Value Plot with Optimal, Constant D Scales

As we noted, this example has no physical significance, it merely demonstrates several of

the different ideas we have covered in this report, namely frequency domain, and state

space it techniques, as well as the optimal constant scaling material of section 10 for time 7N
varying perturbations. Several realistic examples using p have appeared in the literature,

including [DoyLP] and [DoySE]. The emphasis in each of these is a particular example -

the various uses and interpretations possible with the different Y calculations are not the

main issues.

, 1

E< -W

I%.,
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15 Appendix

15.1 Star Products

Recall the example from section 8.3.1 and the results on uncertain difference equations in

section 9. Both of these were done in discrete time, since in that domain, the unit disk -

is important, and disks are what pi is all about. This section shows that the well known -.

bilinear transformation yields results analogous to the above for continuous time systems.

We begin with a generalization of the LFT, called "the star product" which is found in

(Red].

Suppose Q and M are two complex matrices, which we partition as

Q11 Q12 M1 M

Q Q21 Q22 M21 M22

We are a little cavalier about the dimensions here. We only require that the matrix product

Q22Ml makes sense and is square. Obviously then, the product MIQ22 also makes sense

and also is square. If the matrix I - Q22M11 is invertible, then we say the star product W

Q*M, is well defined, and is given by

Q*M := M21 (I - Q2 2M) - Q21 F. (, Q22) (15.1)

Note that this definition is dependent on the partitioning of the matrices Q and M above. - ".

In fact it may be well defined for one partition anO not well defined for another. However,
we will not explicitely show this dependence, as it is always clear from the context. .- ,

In a block diagram, the star product (15.1) has a natural interpretation: it is simply the '.

matrix relating [ to as shown below.
U2 V32 

.

U1  V,

Q
w z "

Figure 15.1 Star Product of Two Man-ices

The assumption that I - Q22M11 is invertible implies that for any vectors u1 and u2,

there exist unique vectors z and w satisfying the loop equations. When working with star
products, it is much easier to manipulate the diagrams, rather than the equations, since

W ~ . I A
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the diagrams are so intuitive, however a little care must be exercised. Consider the loop

below.
U1

Q

M

Figure 15.2 Associativity of Star Producth e r

Should this be viewed as (Q*M)*S or Q*(M*S)? Well, when looking at it pictorially,

it appears to make no difference. But, we have to be careful about the invertibility of the

necessary matrices. For example, suppose all the matrices are 2 x 2, and that Q22 = 0.5,

M= 11 1 ],and S = 1 (the rest of Q and S are irrelevent). Certainly Q*M is okay,

and since [Q*M]22 = 2, the quantity 1-[Q*M]22Sl1 is invertible, and therefore (QM)*S
is well defined. But, since the star product M*S is not even defined, we cannot compare

the first expression, (Q*M)*S to Q*(M*S).

So, if we want to have associativity (which is what to need to manipulate the diagrams,

rather than working via the fairly messy definition), both Q*M and M*S should be well

defined. This requires that both I - Q22M 1 and I - M2S are invertible. In this

case, the next lemma and corollary show that if either (Q*M)*S or if Q*(M*S) is well

defined, then they are equal. 0

Lemma 15.1 If both I - Q22M11 and I - M22Sl are invertible, then the quantity
I - Fu (M, Q22) S1 is invertible if and only if I - F (W, S11) Q22 is invertible.

Proof: We manipulate determinants: det [I - F. (M, Q22) S11] 0

detI-[M 22 +M 2 Q 22 (I-M 1Q 22 )-lMI2]S1  1#0

Sdet - MIQ 22 (I- MQ22 'M 2S1 } #0
-+ det I - M21Q22 (I - M 11Q2)-' M12S11 (I - M 22S11)- } : 0
- det I-M, 2S,,(I- MnSll) M,2 Q 22 (I-M Q22))1 }4 0

N, +-+ ~det I1- MIIQ22 - NI 2S~I(I 1M22 Suiy1Mf 2 1Q22}7 #0

+-+ det {I - F( M, S1) Q22} # 0

This implies the corollary.

,-.
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Corollary 15.2 Let Q, M, and S be given. If Q*M and M*S are each well defined (ie.

I - Q22Ml and I - M 22 SII are invertible), then (Q*M)*S is well defined if and only if
Q*(M*S) is well defined. Furthermore, if they are well defined, then they are equal.

These star products have many interesting properties discovered in [Red]. We will not

pursue them here. In the next section though, we use star products to translate the

discrete time results from sections 8.3.1 and 9 to analogous continuous time results.

15.2 Continuous time results

In this section we show that the well known bilinear transformation, along with the star

product, yields results for continuous time systems.

Let n > 0 be an integer, and define a matrix B by

IB V2 I,,

Suppose A E C'×n . It is simple to relate the eigenvalues of A and F (B, A). In particular,

Lemma 15.3 Let A,, i = 1,... , n, denote the eigenvalues of A. Then Re (A,) < 0 for each 8

i if and only if I - A is invertible, and p [F (B, A)] < 1.

Similarly, we have a matrix version of the bilinear transformation.

Lemma 15.4 Suppose A E C"x'. Let AH (A + A*). Then AH < 0 if and only if

I - A is invertible and a (F (B, A)) < 1.

Proof: Suppose that I- .1 is invertible and & (F (B, A)) < 1. Then

&(F(B,A)) < 1 iff a,((I+ A)(I- A) - ') < 1

iff (I - A')-' (I + A-)(I + A) (I - A) - ' < I .
iff (I + A) (I + A) < (I- A) (I- A)
iff A* + A <-A*-A
iff AH < 0. '"

Reversing the steps gives the proof for the other direction.

I.
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Now, let us apply this to a class of uncertain differential equations, as we did for the discrete

case in section 9. To set it up, let M E C('+)X(n+m) be given, along with a m x m block

structure A, such that uA (M 22) < 1. We are interested in solutions x(t) E Cn that evolve

according to I"

x= F (M, A(t)) x

where the function A(.) is piecewise continuous, say. We assume that the nominal system

is known to be stable, hence all of the eigenvalues of MIl have negative real parts. Consider

the following three assumptions on A(.)

(a.1) For all t, A(t) E A

(a.2) For all t, a (A(t)) < I

(a.3) A(.) is constant - it does not vary with t

Now, (a.3) implies that the system is time invariant, so we just need to check that the -'

dynamic matrix, F1 (M, A) is hurwitz for each allowable A. Equivalently, via Lemma 15.3,

we need to check that p [F (B, F (M, A))] < 1 for all allowable A. This is displayed in

block diagram form below on the left.

B B

M M

Figure 15.3 Uncertain Differential Equations

We would like to exchange the order, and evaluate whether p [F (B*M) , A] < I for all

A, because this is just a y test on B*M. This is illustrated above right. Theorem 15.5 :,,

handles this.

Theorem 15.5 Define , {diag [I,, A] :b E C,A E A}. Then, with the above as-

sumptions, the differential equation i = F (M, A)x is stable for all fixed A E A, with

&(A) _ 1 if and only if (B*M) < 1.

Proof: Since the nominal matrix MI, has all of its eigenvalues in the left half plane, the

star product B*M is well defined. Also by assumption, /A (Ml 22 ) < 1, hence for every

... ~ .'~ ... *\. ... ** IfS le r 0 *W P
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A E A, with & (A) < 1, the LFT F (M, A) is well defined. Hence, the standing

assumptions of lemma 15.1 (or corollary 15.2) are satisfied.

By hypothesis, if A E A, and Z(A) _ 1, then I - [B*M]12 2 A is invertible, and hence

so is I - F (M, A). Therefore, by corollary 15.2, for all such A, we have

F (B,F (M, A)) = F (B*M, A)

Therefore

max p[Fj(B,F(M,A))] = max p[F1 (B*M,A)] < 1

where the last inequality comes from the assumption that p& (B*M) < 1, and the

robust performance theorem, 5.2, applied to B * M, with the block structure ',. n

Hence, using lemma 15.1 shows that the eigenvalues of F1 (M, A) are in the left half

plane for each A.

" Same type of argument. [

Similar results are obtained for the other situations. We collect them here.

Lemma 15.6 There is a single Lyapunov matrix for the entire set of "A" matrices

{F (M, A): A EA, j(A) 1

if and only if
inf. ( TO (B*M) [T] <1iEnf n 0 1 0 1

Tinvertible J LnJ

where A := {diag [A,, A] :A CXA E A}.

Lemma 15.7 Let " := {diag[DiI,D]: DI E C',,n, invertible, D E D}, where E) is the

appropriate scaling set for the block structure A. Then a sufficient condition for Lemma

15.6 is

inf a (b B*M < 1

We can also use B and the star product to switch between z and s domains for transform

results.

I
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Lemma 15.8 Let A, B, C, D be a state space realization of a stable, continuous time

transfer function G(s), with m inputs and m outputs. We assume that the matrix A is

Hurwitz. Define the matrix M as

Let A := {diag [8,I, A2 1: 1 E C, A E Cmlm}. Then 0

IIGIIco < 1 iff ya (B*M) < 1

Lemma 15.9 Let G(s) := D + C (sI - A)-' B be a m input, m output, rational, stable
transfer function. Suppose A 2 is a m x m block structure as in (3.1), and let V 2 be the

corresponding scaling set. For a > 0, define

M = aC aD (

Define - E R by %

7:=sup a: inf 0 D (BM) [ D1 (153)
Of>O D, invertible 2 i1 .

Then

inf sup a (D2 G(s)D-') (15.4)DD E VD ,E C 2 1 . ) , -'

Re(s) o

.

15.3 Convexity Lemma

The following lemma gives a sufficient condition for a continuous function from R- R to
be convex. It is fairly intuitive, and comes from [ChuD]

Lemma 5.2 Let f : R -+ R be a continuous function, and suppose for each t. E R,
there exists function gt , CE (continuously twice differentiable), gto : R --+ R, such that

f(t) = gt(t), f(t) gt(t) for all t E R and d ,=,o > 0. Then f is a convex function.

Proof: Suppose f is not convex. Then there exist x, y E R, x < y, and A E (0, 1) such %

that 0f((l - A)x + Ay) > (1 - A)f (x) + Af(y) N

- - - - - - - - - -
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Let/3 be the largest difference this assumes, ie.

,8 = max [f((1 - a)x + ay) - (1 - a)f (x) -afr(y)]

and let A be the largest value in [0, 1] that achieves #3. Obviously, since /3 > 0,

A E (0, 1). Define tD := (1 - A)x + Ay. Hence f is continuous, satisfies f(t) = /3,
and lies in the shaded region as shown below (shaded region includes its boundary

for t < f, and does not include its boundary for t > ft7). ":

f(t) .

clA d

Figure 15.4 Diagram for Lemma 5.2

Now, let g be any function in C' with g(v) /3, and -2 > 0. Obviously, there

are points w arbitrarily close to tD such that f(w) < g(w). So, by contrapositive, we

have proven the lemma.

",4
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